scholarly journals Evidence for Energetic Neutral Hydrogen Emission from Solar Particle Events

2021 ◽  
Vol 923 (2) ◽  
pp. 195
Author(s):  
G. M. Mason ◽  
M. E. Greenspan ◽  
S. G. Kanekal ◽  
R. A. Leske ◽  
M. D. Looper ◽  
...  

Abstract We report the probable detection of energetic neutral hydrogen atoms (ENAs) at >0.8 MeV in several large solar energetic particle events observed between 1997 and 2004. The low Earth orbiting SAMPEX satellite detected transient increases of quasi-trapped equatorial protons beginning typically ∼3 hr after the X-ray flare and lasting for up to several hours. Since the magnetic cutoff rigidity is >10 GV at the magnetic latitude where the particles were observed, we interpret the signal as due to ENAs that penetrate Earth’s magnetic field and charge exchange in the upper atmosphere, whereupon the charged particles may become trapped. One event outside our survey period (2006 December 5) had previously reported solar flare ENAs, the only example of this phenomenon of which we are aware. Although the statistics are limited, the events we report suggest that the ENAs are produced as the flare-associated coronal mass wjection moves through the corona, as concluded previously for the 2006 December 5 event. The finding of ENAs emitted in conjunction with large solar flares opens a new avenue to understanding these events.

2006 ◽  
Vol 37 (8) ◽  
pp. 1421-1425 ◽  
Author(s):  
G.A. Bazilevskaya ◽  
A.I. Sladkova ◽  
A.K. Svirzhevskaya

2000 ◽  
Vol 195 ◽  
pp. 15-25
Author(s):  
R. P. Lin

The Sun accelerates ions up to tens of GeV and electrons up to 100s of MeV in solar flares and coronal mass ejections. The energy in the accelerated tens-of-keV electrons and possibly ~1 MeV ions constitutes a significant fraction of the total energy released in a flare, implying that the particle acceleration and flare energy release mechanisms are intimately related. The total rate of energy release in transients from flares down to microflares/nanoflares may be significant for heating the active solar corona.Shock waves driven by fast CMEs appear to accelerate the high-energy particles in large solar energetic particle events detected at 1 AU. Smaller SEP events are dominated by ~1 to tens-of-keV electrons, with low fluxes of up to a few MeV/nucleon ions, typically enriched in 3He. The acceleration in gamma-ray flares appears to resemble that in these small electron-3He SEP events.


2018 ◽  
Vol 61 (2) ◽  
pp. 777-785 ◽  
Author(s):  
Bimal Pande ◽  
Seema Pande ◽  
Ramesh Chandra ◽  
Mahesh Chandra Mathpal

2000 ◽  
Vol 179 ◽  
pp. 251-254
Author(s):  
Vladislav Timofeev ◽  
Sergey Starodubtsev

AbstractThe experiment with 10K-80 aboard the INTER-BALL-2 (which detects protons with energies > 7, 27–41, 41–58, 58–88, 88–180 and 180–300 MeV) registered six events of the solar energetic particle (SEP) increase. These events are during the initial rise phase of the 23rd solar activity cycle. Solar flares with the SEP generation are accompanied by coronal mass ejection (CME). Here we analyze the dynamics of the differential energy spectrum at different phases of the SEP increase.


Sign in / Sign up

Export Citation Format

Share Document