scholarly journals Two Analytic Relations Connecting the Hot Gas Astrophysics with the Cold Dark Matter Model for Galaxy Clusters

2021 ◽  
Vol 923 (1) ◽  
pp. 95
Author(s):  
Man Ho Chan

Abstract Galaxy clusters are good targets for examining our understanding of cosmology. Apart from numerical simulations and gravitational lensing, X-ray observation is the most common and conventional way to analyze the gravitational structures of galaxy clusters. Therefore, it is valuable to have simple analytical relations that can connect the observed distribution of the hot, X-ray-emitting gas to the structure of the dark matter in the clusters as derived from simulations. In this article, we apply a simple framework that can analytically connect the hot gas empirical parameters with the standard parameters in the cosmological cold dark matter model. We have theoretically derived two important analytic relations, r s ≈ 3 r c and ρ s ≈ 9 β kT / 8 π Gm g r c 2 , which can easily relate the dark matter properties in galaxy clusters with the hot gas properties. This can give a consistent picture describing gravitational astrophysics for galaxy clusters by the hot gas and cold dark matter models.

2000 ◽  
Vol 539 (2) ◽  
pp. 561-569 ◽  
Author(s):  
Pedro Colin ◽  
Anatoly A. Klypin ◽  
Andrey V. Kravtsov

2019 ◽  
Vol 490 (2) ◽  
pp. 2117-2123 ◽  
Author(s):  
Victor H Robles ◽  
Tyler Kelley ◽  
James S Bullock ◽  
Manoj Kaplinghat

ABSTRACT We perform high-resolution simulations of an MW-like galaxy in a self-interacting cold dark matter model with elastic cross-section over mass of $1~\rm cm^2\, g^{-1}$ (SIDM) and compare to a model without self-interactions (CDM). We run our simulations with and without a time-dependent embedded potential to capture effects of the baryonic disc and bulge contributions. The CDM and SIDM simulations with the embedded baryonic potential exhibit remarkably similar host halo profiles, subhalo abundances, and radial distributions within the virial radius. The SIDM host halo is denser in the centre than the CDM host and has no discernible core, in sharp contrast to the case without the baryonic potential (core size ${\sim}7 \, \rm kpc$). The most massive subhaloes (with $V_{\mathrm{peak}}\gt 20 \, \rm km\, s^{-1}$) in our SIDM simulations, expected to host the classical satellite galaxies, have density profiles that are less dense than their CDM analogues at radii less than 500 pc but the deviation diminishes for less massive subhaloes. With the baryonic potential included in the CDM and SIDM simulations, the most massive subhaloes do not display the too-big-to-fail problem. However, the least dense among the massive subhaloes in both these simulations tend to have the smallest pericenter values, a trend that is not apparent among the bright MW satellite galaxies.


2011 ◽  
Vol 735 (2) ◽  
pp. 132 ◽  
Author(s):  
Kathryn Kreckel ◽  
M. Ryan Joung ◽  
Renyue Cen

Sign in / Sign up

Export Citation Format

Share Document