scholarly journals On the Origin of Gamma-Ray Flares from Bright Fermi Blazars

2021 ◽  
Vol 257 (2) ◽  
pp. 37
Author(s):  
Vaidehi S. Paliya ◽  
M. Böttcher ◽  
Mark Gurwell ◽  
C. S. Stalin

Abstract The origin of γ-ray flares observed from blazars is one of the major mysteries in jet physics. We have attempted to address this problem following a novel spectral energy distribution (SED) fitting technique that explored the flaring patterns identified in the broadband SEDs of two γ-ray bright blazars, 3C 279 (z = 0.54) and 3C 454.3 (z = 0.86), using near-simultaneous radio-to-γ-ray observations. For both sources, the γ-ray flux strongly correlates with the separation of the SED peaks and the Compton dominance. We propose that spectral hardening of the radiating electron population and/or enhancement of the Doppler factor can naturally explain these observations. In both cases, magnetic reconnection may play a pivotal role in powering the luminous γ-ray flares.

2019 ◽  
Vol 623 ◽  
pp. A86 ◽  
Author(s):  
L. Ambrogi ◽  
R. Zanin ◽  
S. Casanova ◽  
E. De Oña Wilhelmi ◽  
G. Peron ◽  
...  

Aims. We investigate the nature of the accelerated particles responsible for the production of the gamma-ray emission observed from the middle-aged supernova remnant (SNR) HB 21. Methods. We present the analysis of more than nine years of Fermi LAT data from the SNR HB 21. We performed morphological and spectral analysis of the SNR by means of a three-dimensional binned likelihood analysis. To assess the intrinsic properties of the parent particle models, we fit the obtained gamma-ray spectral energy distribution of the SNR by both hadronic- and leptonic-induced gamma-ray spectrum. Results. We observe an extended emission positionally in agreement with the SNR HB 21. The bulk of this gamma-ray emission is detected from the remnant; photons up to ~10 GeV show clear evidence of curvature at the lower energies. The remnant is characterized by an extension of 0°.83, that is, 30% smaller than claimed in previous studies. The increased statistics allowed us also to resolve a point-like source at the edge of the remnant, in proximity to a molecular cloud of the Cyg OB7 complex. In the southern part of the remnant, a hint of an additional gamma-ray excess in correspondence to shocked molecular clouds is observed. Conclusions. The spectral energy distribution of the SNR shows evidence of a break around 400 MeV, which can be properly fitted within both the hadronic and leptonic scenario. The pion-decay mechanism reproduces well the gamma rays, postulating a proton spectrum with a slope ~2.5 and with a steepening around tens of GeV, which could be explained by the energy-dependent escape of particles from the remnant. In the leptonic scenario the electron spectrum within the SNR matches closely the locally measured spectrum. This remarkable and novel result shows that SNR HB 21 could be a direct contributor to the population of Galactic electrons. In the leptonic scenario, we find that the local electron spectrum with a break around 2 GeV, closely evokes the best-fitting parental spectrum within this SNR. If such a scenario is confirmed, this would indicate that the SNR might be a source of Galactic background electrons.


2016 ◽  
Vol 12 (S324) ◽  
pp. 78-81
Author(s):  
Hai-Ming Zhang ◽  
Da-Bin Lin ◽  
Ting-Ting Lin ◽  
Bao-Rong Liu ◽  
Xiao-Li Huang ◽  
...  

AbstractThe Lorentz factor (Γ) is an important parameter related to the relativistic jet physics. We study the evolution patterns of Γ within gamma-ray burst (GRB) and active galactic nuclear jets for individual GRB 090168, GRB 140508A, and 3C 454.3. By estimating the Γ values for well-separated pulses in GRBs 090618 and 140508A with an empirical relation derived from typical GRBs, we find that the Γ evolution pattern in the two GRBs are different. The increasing-to-coasting evolution pattern of Γ in GRB 090618 likely indicates that the GRB fireball is still being accelerated in the prompt phase. The clear decrease evolution pattern of Γ in GRB 140508A suggests the deceleration of the fireball components. By deriving the Γ value through fitting their spectral energy distribution in different flares of 3C 454.3, a pattern of Γ-tracking-γ-ray flux is clearly found, likely indicating that the observed gamma-ray flares are being due to the Doppler boosting effect to the jet emission.


2010 ◽  
Author(s):  
F. Massaro ◽  
J. E. Grindlay ◽  
A. Paggi ◽  
Nobuyuki Kawai ◽  
Shigehiro Nagataki

2018 ◽  
Vol 27 (10) ◽  
pp. 1844007
Author(s):  
S. Gasparyan ◽  
N. Sahakyan ◽  
P. Chardonnet

The discovery of very-high-energy gamma-ray emission from Flat Spectrum Radio Quasars (FSRQs) by ground-based Cherenkov telescopes (HESS, MAGIC, VERITAS) provides a new view of blazar emission processes. The available data from multiwavelength observations of FSRQs, allow us to constrain the size (possibly also location) of the emitting region, magnetic field, electron energy distribution, etc., which are crucial for the understanding of the jet properties. We investigate the origin of emission from FSRQs (PKS 1510-089, PKS 1222+216 and 3C 279) by modeling the broadband spectral energy distribution in their quiescent and flaring states, using estimation of the parameter space that describes the underlying particle distribution responsible for the emission through the Markov Chain Monte Carlo (MCMC) technique.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012013
Author(s):  
A Eungwanichayapant ◽  
W Luangtip

Abstract Interactions between Very High Energy (VHE) gamma-rays from Active Galactic Nuclei (AGNs) and infrared photons from the Extragalactic Background Light (EBL) can start electromagnetic cascades. If the extragalactic magnetic field near a host galaxy is strong enough (∼1 µG), the cascades would develop isotropically around the AGN. As a result, the electron/positron pairs created along the development of the cascades would create an X-ray halo via synchrotron radiation process. It is believed that the VHE gamma-ray spectra from the AGNs could be approximated by a power-law model which is truncated at high energy end (i.e. maximum energy). In this work we studied the X-ray Spectral Energy Distribution (SED) of the halo generated from the AGN spectra with different power indices and maximum energy levels. The results showed that the SEDs were slightly higher and broader, as they were obtaining higher flux if the power indices were lower. On the other hand, the SEDs were sensitive to the maximum energy levels between 100-300 TeV. More flux could be obtained from the higher maximum energy. However, we found that the SED becomes insensitive to the varied parameters when the maximum energy and the power index are > 500 TeV and < 1.5, respectively.


2020 ◽  
Vol 636 ◽  
pp. A55 ◽  
Author(s):  
M. Ronchi ◽  
F. Fumagalli ◽  
M. E. Ravasio ◽  
G. Oganesyan ◽  
M. Toffano ◽  
...  

The gamma-ray burst (GRB) 180720B is one of the brightest events detected by the Fermi satellite and the first GRB detected by the H.E.S.S. telescope above 100 GeV, at around ten hours after the trigger time. We analysed the Fermi (GBM and LAT) and Swift (XRT and BAT) data and describe the evolution of the burst spectral energy distribution in the 0.5 keV–10 GeV energy range over the first 500 s of emission. We reveal a smooth transition from the prompt phase, dominated by synchrotron emission in a moderately fast cooling regime, to the afterglow phase whose emission has been observed from the radio to the gigaelectronvolts energy range. The LAT (0.1–100 GeV) light curve initially rises (FLAT ∝ t2.4), peaks at ∼78 s, and falls steeply (FLAT ∝ t−2.2) afterwards. The peak, which we interpret as the onset of the fireball deceleration, allows us to estimate the bulk Lorentz factor Γ0 ∼ 150 (300) under the assumption of a circum-burst medium with a wind-like (homogeneous) density profile. We derive a flux upper limit in the LAT energy range at the time of H.E.S.S. detection, but this does not allow us to unveil the nature of the high-energy component observed by H.E.S.S. We fit the prompt spectrum with a physical model of synchrotron emission from a non-thermal population of electrons. The 0–35 s spectrum after its EF(E) peak (at 1–2 MeV) is a steep power law extending to hundreds of megaelectronvolts. We derive a steep slope of the injected electron energy distribution N(γ) ∝ γ−5. Our fit parameters point towards a very low magnetic field (B′ ∼ 1 G) in the emission region.


2010 ◽  
Vol 6 (S275) ◽  
pp. 82-86 ◽  
Author(s):  
Dipankar Maitra ◽  
Andrew Cantrell ◽  
Sera Markoff ◽  
Heino Falcke ◽  
Jon Miller ◽  
...  

AbstractWe present results of recent observations and theoretical modeling of data from black holes accreting at very low luminosities (L/LEdd ≲ 10−8). We discuss our newly developed time-dependent model for episodic ejection of relativistic plasma within a jet framework, and a successful application of this model to describe the origin of radio flares seen in Sgr A*, the Galactic center black hole. Both the observed time lags and size-frequency relationships are reproduced well by the model. We also discuss results from new Spitzer data of the stellar black hole X-ray binary system A0620–00. Complemented by long term SMARTS monitoring, these observations indicate that once the contribution from the accretion disk and the donor star are properly included, the residual mid-IR spectral energy distribution of A0620–00 is quite flat and consistent with a non-thermal origin. The results above suggest that a significant fraction of the observed spectral energy distribution originating near black holes accreting at low luminosities could result from a mildly relativistic outflow. The fact that these outflows are seen in both stellar-mass black holes as well as in supermassive black holes at the heart of AGNs strengthens our expectation that accretion and jet physics scales with mass.


2019 ◽  
Vol 15 (S356) ◽  
pp. 374-374
Author(s):  
Prospery Simpemba

AbstractThis study focuses on spectral energy distributions and light-curves of blazars and radio galaxies, and the testing of the existing models with a view to appropriately predict a new model that will nearly accurately present the nature of the energy outflows of these super-massive bodies. Understanding blazar emission is very important as it relates more directly to the physics of the AGN’s central black hole. X-ray, radio and gamma-ray wavelength range data on blazars and radio galaxies from archived data has been collected and a detailed investigation of the spectral energy distribution patterns of the blazars and radio galaxies carried out so as to fit the data in the various models. The results of this investigation will be discussed in detail in this presentation.


Sign in / Sign up

Export Citation Format

Share Document