scholarly journals THE TIME EVOLUTION OF GAPS IN TIDAL STREAMS

2016 ◽  
Vol 828 (1) ◽  
pp. L10 ◽  
Author(s):  
Amina Helmi ◽  
Helmer H. Koppelman
Keyword(s):  
2016 ◽  
Vol 16 (1) ◽  
pp. 60-73 ◽  
Author(s):  
Duncan Forgan ◽  
Pratika Dayal ◽  
Charles Cockell ◽  
Noam Libeskind

AbstractWe present the first model that couples high-resolution simulations of the formation of local group galaxies with calculations of the galactic habitable zone (GHZ), a region of space which has sufficient metallicity to form terrestrial planets without being subject to hazardous radiation. These simulations allow us to make substantial progress in mapping out the asymmetric three-dimensional GHZ and its time evolution for the Milky Way (MW) and Triangulum (M33) galaxies, as opposed to works that generally assume an azimuthally symmetric GHZ. Applying typical habitability metrics to MW and M33, we find that while a large number of habitable planets exist as close as a few kiloparsecs from the galactic centre, the probability of individual planetary systems being habitable rises as one approaches the edge of the stellar disc. Tidal streams and satellite galaxies also appear to be fertile grounds for habitable planet formation. In short, we find that both galaxies arrive at similar GHZs by different evolutionary paths, as measured by the first and third quartiles of surviving biospheres. For the MW, this interquartile range begins as a narrow band at large radii, expanding to encompass much of the Galaxy at intermediate times before settling at a range of 2–13 kpc. In the case of M33, the opposite behaviour occurs – the initial and final interquartile ranges are quite similar, showing gradual evolution. This suggests that Galaxy assembly history strongly influences the time evolution of the GHZ, which will affect the relative time lag between biospheres in different galactic locations. We end by noting the caveats involved in such studies and demonstrate that high-resolution cosmological simulations will play a vital role in understanding habitability on galactic scales, provided that these simulations accurately resolve chemical evolution.


2017 ◽  
Vol 12 (S330) ◽  
pp. 229-230
Author(s):  
Helmer H. Koppelman ◽  
Amina Helmi

AbstractOur goal is to understand the evolution and properties of gaps produced by dark matter subhalos in stellar tidal streams. Here we explore how gaps grow in spherical potentials in comparison to axisymmetric potentials. We develop a model that uses the divergence of two orbits, one on each side of the gap, to describe the size of the gap and how this varies with time and depends on the characteristics of the encounter with the dark subhalo. To this end we use a formalism based on action-angle variables.


2017 ◽  
Author(s):  
David Hernández-Uribe ◽  
◽  
Chris G. Mattinson ◽  
Owen K. Neill ◽  
Andrew Kylander-Clark ◽  
...  

Author(s):  
Klaus Morawetz

The historical development of kinetic theory is reviewed with respect to the inclusion of virial corrections. Here the theory of dense gases differs from quantum liquids. While the first one leads to Enskog-type of corrections to the kinetic theory, the latter ones are described by quasiparticle concepts of Landau-type theories. A unifying kinetic theory is envisaged by the nonlocal quantum kinetic theory. Nonequilibrium phenomena are the essential processes which occur in nature. Any evolution is built up of involved causal networks which may render a new state of quality in the course of time evolution. The steady state or equilibrium is rather the exception in nature, if not a theoretical abstraction at all.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Sébastien Descotes-Genon ◽  
Martín Novoa-Brunet ◽  
K. Keri Vos

Abstract We consider the time-dependent analysis of Bd→ KSℓℓ taking into account the time-evolution of the Bd meson and its mixing into $$ {\overline{B}}_d $$ B ¯ d . We discuss the angular conventions required to define the angular observables in a transparent way with respect to CP conjugation. The inclusion of time evolution allows us to identify six new observables, out of which three could be accessed from a time-dependent tagged analysis. We also show that these observables could be obtained by time-integrated measurements in a hadronic environment if flavour tagging is available. We provide simple and precise predictions for these observables in the SM and in NP models with real contributions to SM and chirally flipped operators, which are independent of form factors and charm-loop contributions. As such, these observables provide robust and powerful cross-checks of the New Physics scenarios currently favoured by global fits to b → sℓℓ data. In addition, we discuss the sensitivity of these observables with respect to NP scenarios involving scalar and tensor operators, or CP-violating phases. We illustrate how these new observables can provide a benchmark to discriminate among the various NP scenarios in b → sμμ. We discuss the extension of these results for Bs decays into f0, η or η′.


Sign in / Sign up

Export Citation Format

Share Document