Dynamic Model of Organizational Learning: De-Escalation of Learning Behaviour

Author(s):  
Chow P. T. ◽  
Wong P. S. P. ◽  
Cheung S. O.
2008 ◽  
Vol 45 ◽  
pp. 147-160 ◽  
Author(s):  
Jörg Schaber ◽  
Edda Klipp

Volume is a highly regulated property of cells, because it critically affects intracellular concentration. In the present chapter, we focus on the short-term volume regulation in yeast as a consequence of a shift in extracellular osmotic conditions. We review a basic thermodynamic framework to model volume and solute flows. In addition, we try to select a model for turgor, which is an important hydrodynamic property, especially in walled cells. Finally, we demonstrate the validity of the presented approach by fitting the dynamic model to a time course of volume change upon osmotic shock in yeast.


1980 ◽  
Vol 41 (C8) ◽  
pp. C8-284-C8-288 ◽  
Author(s):  
V. A. Poluchin ◽  
M. M. Dzugutov ◽  
V. F. Uchov ◽  
R. A. Vatolin

Sign in / Sign up

Export Citation Format

Share Document