thermodynamic framework
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 43)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
pp. 118358
Author(s):  
Ali Rasoolzadeh ◽  
Ali Bakhtyari ◽  
Mohammad Reza Sedghamiz ◽  
Jafar Javanmardi ◽  
Khashayar Nasrifar ◽  
...  

Author(s):  
Sergey P. Verevkin ◽  
Irina V. Andreeva ◽  
Vladimir N. Emeĺyanenko

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1329
Author(s):  
Lijesh Koottaparambil ◽  
M. M. Khonsari

An extensive survey of open literature reveals the need for a unifying approach for characterizing the degradation of tribo-pairs. This paper focuses on recent efforts made towards developing unified relationships for adhesive-type wear under unlubricated conditions through a thermodynamic framework. It is shown that this framework can properly characterize many complex scenarios, such as degradation problems involving unidirectional, bidirectional (oscillatory and reciprocating motions), transient operating conditions (e.g., during the running-in period), and variable loading/speed sequencing.


2021 ◽  
pp. 108128652110429
Author(s):  
M. Kazemian ◽  
A. Moazemi Goudarzi ◽  
A. Hassani

The present paper investigates the degradation of compressible polymers based on the proposed model on strain-induced degradation of incompressible polymers. In a non-equilibrium thermodynamic framework, constitutive equations and evolution laws are derived using the principle of maximum energy dissipation rate and specifying how energy can be stored and dissipated. As a computational model, the governing equations are applied to the pressurized polymeric vessel subjected to the Ogden–Hill compressible hyperelastic material model. To analyze the axisymmetric plane-strain degradable vessel, programming in ANSYS Parametric Design Language (APDL) and the Standard Galerkin Finite Element Method (SGFEM) are applied. The results show that the degradable compressible Ogden–Hill model can also predict the degradation of incompressible polymers subjected to the neo-Hookean model. Results also reveal that the highest dissipation rate and material softening occur at the inner radius of the inflated degradable vessel. Creep-like and stress-relaxation-like responses of the polymeric vessel with time-position-dependent material properties are examined. ANSYS coding indicates good accuracy and efficiency in studying the compressible vessel subjected to inhomogeneous degradation.


2021 ◽  
Author(s):  
Samuel Schroers ◽  
Olivier Eiff ◽  
Axel Kleidon ◽  
Ulrike Scherer ◽  
Jan Wienhöfer ◽  
...  

Abstract. Recent developments in hydrology have led to a new perspective on runoff processes, extending beyond the classical mass dynamics of water in a catchment. For instance, stream flow has been analysed in a thermodynamic framework, which allows the incorporation of two additional physical laws and enhances our understanding of catchments as open environmental systems. Related investigations suggested that energetic extremal principles might constrain hydrological processes, because the latter are associated with conversions and dissipation of free energy. Here we expand this thermodynamic perspective by exploring how hillslope structures at the macro- and microscale control the free energy balance of Hortonian overland flow. We put special emphasis on the transitions of surface runoff processes at the hillslope scale, as hillslopes energetically behave distinctly different in comparison to fluvial systems. To this end, we develop a general theory of surface runoff and of the related conversion of geopotential energy gradients into other forms of energy, particularly kinetic energy as the driver of erosion and sediment transport. We then use this framework at a macroscopic scale to analyse how combinations of typical hillslopes profiles and width distributions control the spatial patterns of steady-state stream power and energy dissipation along the flow path. At the microscale, we analyse flow concentration in rills and its influence on the distribution of energy and dissipation in space. Therefore, we develop a new numerical method for the Catflow model, which allows a dynamical separation of Hortonian surface runoff between a rill- and a sheet flow domain. We calibrated the new Catflow-Rill model to rainfall simulation experiments and observed overland flow in the Weiherbach catchment and found evidence that flow accumulation in rills serves as a means to redistribute energy gradients in space, therefore minimizing energy expenditure along the flow path, while also maximizing overall power of the system. Our results indicate that laminar sheet flow and turbulent rill flow on hillslopes develop to a dynamic equilibrium that corresponds to a maximum power state, and that the transition of flow from one domain into the other is marked by an energy maximum in space.


2021 ◽  
Author(s):  
Alberto Ippolito ◽  
Antonio DeSimone ◽  
Vikram Deshpande

Adherent cells seeded on substrates spread and evolve their morphology while simultaneously displaying motility. Phenomena such as contact guidance viz. the alignment of cells on patterned substrates, are strongly linked to the coupling of morphological evolution with motility. Here we employ a recently developed statistical thermodynamics framework for modelling the non-thermal fluctuating response of the cells to probe this coupling. This thermodynamic framework is first extended to predict temporal responses via a Langevin style model. The Langevin model is then shown to not only predict the different experimentally observed temporal scales for morphological observables such as cell area and elongation but also the interplay of morphology with motility that ultimately leads to contact guidance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hideshi Ooka ◽  
Jun Huang ◽  
Kai S. Exner

The Sabatier principle, which states that the binding energy between the catalyst and the reactant should be neither too strong nor too weak, has been widely used as the key criterion in designing and screening electrocatalytic materials necessary to promote the sustainability of our society. The widespread success of density functional theory (DFT) has made binding energy calculations a routine practice, turning the Sabatier principle from an empirical principle into a quantitative predictive tool. Given its importance in electrocatalysis, we have attempted to introduce the reader to the fundamental concepts of the Sabatier principle with a highlight on the limitations and challenges in its current thermodynamic context. The Sabatier principle is situated at the heart of catalyst development, and moving beyond its current thermodynamic framework is expected to promote the identification of next-generation electrocatalysts.


2021 ◽  
Vol 9 ◽  
Author(s):  
A. Arango-Restrepo ◽  
J. M. Rubi ◽  
Srutarshi Pradhan

Fiber breakage process involves heat exchange with the medium and energy dissipation in the form of heat, sound, and light, among others. A purely mechanical treatment is therefore in general not enough to provide a complete description of the process. We have proposed a thermodynamic framework which allows us to identify new alarming signals before the breaking of the whole set of fibers. The occurrence of a maximum of the reversible heat, a minimum of the derivative of the dissipated energy, or a minimum in the stretching velocity as a function of the stretch can prevent us from an imminent breakage of the fibers which depends on the nature of the fiber material and on the load applied. The proposed conceptual framework can be used to analyze how dissipation and thermal fluctuations affect the stretching process of fibers in systems as diverse as single-molecules, textile and muscular fibers, and composite materials.


Sign in / Sign up

Export Citation Format

Share Document