Numerical Modeling of Undrained Cyclic Behaviour of Granular Media Using Discrete Element Method

Author(s):  
B. Ferdowsi ◽  
A. Soroush ◽  
R. Shafipour
2020 ◽  
Vol 28 (2) ◽  
pp. 1-7
Author(s):  
Rouhollah Basirat ◽  
Jafar Khademi Hamidi

AbstractUnderstanding the brittleness of rock has a crucial importance in rock engineering applications such as the mechanical excavation of rock. In this study, numerical modeling of a punch penetration test is performed using the Discrete Element Method (DEM). The Peak Strength Index (PSI) as a function of the brittleness index was calculated using the axial load and a penetration graph obtained from numerical models. In the first step, the numerical model was verified by experimental results. The results obtained from the numerical modeling showed a good agreement with those obtained from the experimental tests. The propagation path was also simulated using Voronoi meshing. The fracture was created under the indenter in the first step, and then radial fractures were propagated. The effects of confining pressure and strength parameters on the PSI were subsequently investigated. The numerical results showed that the PSI increases with enhancing the confining pressure and the strength parameter of the rock, including cohesion and the friction angle. A new relationship between the strength parameters and PSI was also introduced based on two variable regressions of the numerical results.


Langmuir ◽  
2019 ◽  
Vol 35 (39) ◽  
pp. 12754-12764 ◽  
Author(s):  
Alexandr Zubov ◽  
José Francisco Wilson ◽  
Martin Kroupa ◽  
Miroslav Šoóš ◽  
Juraj Kosek

2005 ◽  
Vol 128 (3) ◽  
pp. 439-444 ◽  
Author(s):  
Harald Kruggel-Emden ◽  
Siegmar Wirtz ◽  
Erdem Simsek ◽  
Viktor Scherer

The discrete element method can be used for modeling moving granular media in which heat and mass transport takes place. In this paper the concept of discrete element modeling with special emphasis on applicable force laws is introduced and the necessary equations for heat transport within particle assemblies are derived. Possible flow regimes in moving granular media are discussed. The developed discrete element model is applied to a new staged reforming process for biomass and waste utilization which employs a solid heat carrier. Results are presented for the flow regime and heat transport in substantial vessels of the process.


Sign in / Sign up

Export Citation Format

Share Document