scholarly journals Targeting the T-cell membrane type-1 matrix metalloproteinase-CD44 axis in a transferred type 1 diabetes model in NOD mice

2012 ◽  
Vol 5 (2) ◽  
pp. 438-442 ◽  
Author(s):  
ALEXEI Y. SAVINOV ◽  
ALEX Y. STRONGIN
2006 ◽  
Vol 20 (11) ◽  
pp. 1793-1801 ◽  
Author(s):  
Alexei Y. Savinov ◽  
Dmitri V. Rozanov ◽  
Alex Y. Strongin

IUBMB Life ◽  
2007 ◽  
Vol 59 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Alexei Savinov ◽  
Alex Strongin

Diabetes ◽  
2019 ◽  
Vol 68 (6) ◽  
pp. 1251-1266 ◽  
Author(s):  
Florian Wiede ◽  
Thomas C. Brodnicki ◽  
Pei Kee Goh ◽  
Yew A. Leong ◽  
Gareth W. Jones ◽  
...  
Keyword(s):  
T Cell ◽  

Diabetes ◽  
2006 ◽  
Vol 55 (7) ◽  
pp. 2098-2105 ◽  
Author(s):  
P. Alard ◽  
J. N. Manirarora ◽  
S. A. Parnell ◽  
J. L. Hudkins ◽  
S. L. Clark ◽  
...  

Diabetes ◽  
2002 ◽  
Vol 51 (2) ◽  
pp. 339-346 ◽  
Author(s):  
W. Gurr ◽  
R. Yavari ◽  
L. Wen ◽  
M. Shaw ◽  
C. Mora ◽  
...  

2020 ◽  
Author(s):  
Heejoo Kim ◽  
Jelena Perovanovic ◽  
Arvind Shakya ◽  
Zuolian Shen ◽  
Cody N. German ◽  
...  

AbstractThe transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present, but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice, but diminished in monoclonal models specific to artificial or neoantigens. Rationally-designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels, and reduced T cell infiltration and proinflammatory cytokine expression in newly-diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.~40-word summary statement for the online JEM table of contents and alertsKim and colleagues show that OCA-B in T cells is essential for the generation of type-1 diabetes. OCA-B loss leaves the pancreatic lymph nodes largely undisturbed, but associates autoreactive CD4+ T cells in the pancreas with anergy while deleting potentially autoreactive CD8+ T cells.SummaryKim et al. show that loss or inhibition of OCA-B in T cells protects mice from type-1 diabetes.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112467 ◽  
Author(s):  
Joanna Kern ◽  
Robert Drutel ◽  
Silvia Leanhart ◽  
Marek Bogacz ◽  
Rafal Pacholczyk

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Cailin Yu ◽  
Jeremy C. Burns ◽  
William H. Robinson ◽  
Paul J. Utz ◽  
Peggy P. Ho ◽  
...  

Type 1 diabetes is an autoimmune disease in which insulin-producing pancreatic isletβcells are the target of self-reactive B and T cells. T cells reactive with epitopes derived from insulin and/or IGRP are critical for the initiation and maintenance of disease, but T cells reactive with other islet antigens likely have an essential role in disease progression. We sought to identify candidate CD8+T cell epitopes that are pathogenic in type 1 diabetes. Proteins that elicit autoantibodies in human type 1 diabetes were analyzed by predictive algorithms for candidate epitopes. Using several different tolerizing regimes using synthetic peptides, two new predicted tolerogenic CD8+T cell epitopes were identified in the murine homolog of the major human islet autoantigen zinc transporter ZnT8 (aa 158–166 and 282–290) and one in a non-βcell protein, dopamineβ-hydroxylase (aa 233–241). Tolerizing vaccination of NOD mice with a cDNA plasmid expressing full-length proinsulin prevented diabetes, whereas plasmids encoding ZnT8 and DβH did not. However, tolerizing vaccination of NOD mice with the proinsulin plasmid in combination with plasmids expressing ZnT8 and DβH decreased insulitis and enhanced prevention of disease compared to vaccination with the plasmid encoding proinsulin alone.


Sign in / Sign up

Export Citation Format

Share Document