transcriptional coregulator
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 21)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 14 ◽  
Author(s):  
Elizabeth Gage ◽  
Devansh Agarwal ◽  
Calvin Chenault ◽  
Kameron Washington-Brown ◽  
Sarah Szvetecz ◽  
...  

Complex transcriptional gene regulation allows for multifaceted isoform production during retinogenesis, and novel isoforms transcribed from a single locus can have unlimited potential to code for diverse proteins with different functions. In this study, we explored the CTBP2/RIBEYE gene locus and its unique repertoire of transcripts that are conserved among vertebrates. We studied the transcriptional coregulator (CTBP2) and ribbon synapse-specific structural protein (RIBEYE) in the chicken retina by performing comprehensive histochemical and sequencing analyses to pinpoint cell and developmental stage-specific expression of CTBP2/RIBEYE in the developing chicken retina. We demonstrated that CTBP2 is widely expressed in retinal progenitors beginning in early retinogenesis but becomes limited to GABAergic amacrine cells in the mature retina. Inversely, RIBEYE is initially epigenetically silenced in progenitors and later expressed in photoreceptor and bipolar cells where they localize to ribbon synapses. Finally, we compared CTBP2/RIBEYE regulation in the developing human retina using a pluripotent stem cell derived retinal organoid culture system. These analyses demonstrate that similar regulation of the CTBP2/RIBEYE locus during chick and human retinal development is regulated by different members of the K50 homeodomain transcription factor family.


2021 ◽  
Author(s):  
Mengle Shao ◽  
Qianbin Zhang ◽  
Ashley Truong ◽  
Bo Shan ◽  
Lavanya Vishvanath ◽  
...  

Energy-storing white adipocytes maintain their identity by suppressing the energy-burning thermogenic gene program of brown and beige adipocytes. Here, we reveal that the protein–protein interaction between the transcriptional coregulator ZFP423 and brown fat determination factor EBF2 is essential for restraining the thermogenic phenotype of white adipose tissue (WAT). Disruption of the ZFP423–EBF2 protein interaction through CRISPR–Cas9 gene editing triggers widespread “browning” of WAT in adult mice. Mechanistically, ZFP423 recruits the NuRD corepressor complex to EBF2-bound thermogenic gene enhancers. Loss of adipocyte Zfp423 induces an EBF2 NuRD-to-BAF coregulator switch and a shift in PPARγ occupancy to thermogenic genes. This shift in PPARγ occupancy increases the antidiabetic efficacy of the PPARγ agonist rosiglitazone in obesity while diminishing the unwanted weight-gaining effect of the drug. These data indicate that ZFP423 controls EBF2 coactivator recruitment and PPARγ occupancy to determine the thermogenic plasticity of adipocytes and highlight the potential of therapeutically targeting transcriptional brakes to induce beige adipocyte biogenesis in obesity.


Author(s):  
Ana Töpf ◽  
◽  
Angela Pyle ◽  
Helen Griffin ◽  
Leslie Matalonga ◽  
...  

AbstractTRIP4 is one of the subunits of the transcriptional coregulator ASC-1, a ribonucleoprotein complex that participates in transcriptional coactivation and RNA processing events. Recessive variants in the TRIP4 gene have been associated with spinal muscular atrophy with bone fractures as well as a severe form of congenital muscular dystrophy. Here we present the diagnostic journey of a patient with cerebellar hypoplasia and spinal muscular atrophy (PCH1) and congenital bone fractures. Initial exome sequencing analysis revealed no candidate variants. Reanalysis of the exome data by inclusion in the Solve-RD project resulted in the identification of a homozygous stop-gain variant in the TRIP4 gene, previously reported as disease-causing. This highlights the importance of analysis reiteration and improved and updated bioinformatic pipelines. Proteomic profile of the patient’s fibroblasts showed altered RNA-processing and impaired exosome activity supporting the pathogenicity of the detected variant. In addition, we identified a novel genetic form of PCH1, further strengthening the link of this characteristic phenotype with altered RNA metabolism.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Lingling Wang ◽  
Jiashen Sun ◽  
Yueyuan Yin ◽  
Yanan Sun ◽  
Jinyi Ma ◽  
...  

AbstractTo support cellular homeostasis and mitigate chemotherapeutic stress, cancer cells must gain a series of adaptive intracellular processes. Here we identify that NUPR1, a tamoxifen (Tam)-induced transcriptional coregulator, is necessary for the maintenance of Tam resistance through physical interaction with ESR1 in breast cancers. Mechanistically, NUPR1 binds to the promoter regions of several genes involved in autophagy process and drug resistance such as BECN1, GREB1, RAB31, PGR, CYP1B1, and regulates their transcription. In Tam-resistant ESR1 breast cancer cells, NUPR1 depletion results in premature senescence in vitro and tumor suppression in vivo. Moreover, enforced-autophagic flux augments cytoplasmic vacuolization in NUPR1-depleted Tam resistant cells, which facilitates the transition from autophagic survival to premature senescence. Collectively, these findings suggest a critical role for NUPR1 as a transcriptional coregulator in enabling endocrine persistence of breast cancers, thus providing a vulnerable diagnostic and/or therapeutic target for endocrine resistance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ayesha A. Shafi ◽  
Chris M. McNair ◽  
Jennifer J. McCann ◽  
Mohammed Alshalalfa ◽  
Anton Shostak ◽  
...  

AbstractMechanisms regulating DNA repair processes remain incompletely defined. Here, the circadian factor CRY1, an evolutionally conserved transcriptional coregulator, is identified as a tumor specific regulator of DNA repair. Key findings demonstrate that CRY1 expression is androgen-responsive and associates with poor outcome in prostate cancer. Functional studies and first-in-field mapping of the CRY1 cistrome and transcriptome reveal that CRY1 regulates DNA repair and the G2/M transition. DNA damage stabilizes CRY1 in cancer (in vitro, in vivo, and human tumors ex vivo), which proves critical for efficient DNA repair. Further mechanistic investigation shows that stabilized CRY1 temporally regulates expression of genes required for homologous recombination. Collectively, these findings reveal that CRY1 is hormone-induced in tumors, is further stabilized by genomic insult, and promotes DNA repair and cell survival through temporal transcriptional regulation. These studies identify the circadian factor CRY1 as pro-tumorigenic and nominate CRY1 as a new therapeutic target.


2021 ◽  
Vol 433 (2) ◽  
pp. 166722
Author(s):  
Yucong Yu ◽  
Adam Tencer ◽  
Hongwen Xuan ◽  
Tatiana G. Kutateladze ◽  
Xiaobing Shi

2020 ◽  
Vol 218 (3) ◽  
Author(s):  
Heejoo Kim ◽  
Jelena Perovanovic ◽  
Arvind Shakya ◽  
Zuolian Shen ◽  
Cody N. German ◽  
...  

The transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell–specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell–specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice but diminished in monoclonal models specific to artificial or neoantigens. Rationally designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels and reduced T cell infiltration and proinflammatory cytokine expression in newly diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.


2020 ◽  
Author(s):  
Joaquín Pérez-Schindler ◽  
Bastian Kohl ◽  
Konstantin Schneider-Heieck ◽  
Volkan Adak ◽  
Julien Delezie ◽  
...  

AbstractThe peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α) integrates environmental cues by controlling complex transcriptional networks in various metabolically active tissues. However, it is unclear how a transcriptional coregulator coordinates dynamic biological programs in response to multifaceted stimuli such as endurance training or fasting. Here, we discovered a central function of the poorly understood C-terminal domain (CTD) of PGC-1α to bind RNAs and assemble multi-protein complexes. Surprisingly, in addition to controlling the coupling of transcription and processing of target genes, RNA binding is indispensable for the recruitment of PGC-1α to chromatin into liquid-like nuclear condensates, which compartmentalize and regulate active transcription. These results demonstrate a hitherto unsuspected molecular mechanism by which complexity in the regulation of large transcriptional networks by PGC-1α is achieved. These findings are not only essential for the basic understanding of transcriptional coregulator-driven control of biological programs, but will also help to devise new strategies to modulate these processes in pathological contexts in which PGC-1α function is dysregulated, such as type 2 diabetes, cardiovascular diseases or skeletal muscle wasting.


Cell Reports ◽  
2020 ◽  
Vol 32 (11) ◽  
pp. 108141
Author(s):  
Karima Drareni ◽  
Raphaëlle Ballaire ◽  
Fawaz Alzaid ◽  
Andreia Goncalves ◽  
Catherine Chollet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document