scholarly journals Research on the changes in balance motion behavior and learning, as well as memory abilities of rats with multiple cerebral concussion-induced chronic traumatic encephalopathy and the underlying mechanism

Author(s):  
Huan Zhang ◽  
Zhenguang Zhang ◽  
Zhen Wang ◽  
Yongjiang Zhen ◽  
Jiangyun Yu ◽  
...  
2020 ◽  
Author(s):  
Allysa Warling ◽  
Riri Uchida ◽  
Hyunsoo Shin ◽  
Coby Dodelson ◽  
Madeleine E. Garcia ◽  
...  

2010 ◽  
Vol 69 (3) ◽  
pp. 161-167 ◽  
Author(s):  
Jisien Yang ◽  
Adrian Schwaninger

Configural processing has been considered the major contributor to the face inversion effect (FIE) in face recognition. However, most researchers have only obtained the FIE with one specific ratio of configural alteration. It remains unclear whether the ratio of configural alteration itself can mediate the occurrence of the FIE. We aimed to clarify this issue by manipulating the configural information parametrically using six different ratios, ranging from 4% to 24%. Participants were asked to judge whether a pair of faces were entirely identical or different. The paired faces that were to be compared were presented either simultaneously (Experiment 1) or sequentially (Experiment 2). Both experiments revealed that the FIE was observed only when the ratio of configural alteration was in the intermediate range. These results indicate that even though the FIE has been frequently adopted as an index to examine the underlying mechanism of face processing, the emergence of the FIE is not robust with any configural alteration but dependent on the ratio of configural alteration.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (01) ◽  
pp. 31-37
Author(s):  
Bryan McCulloch ◽  
John Roper ◽  
Kaitlin Rosen

Barrier coatings are used in applications including food packaging, dry goods, and consumer products to prevent transport of different compounds either through or into paper and paperboard substrates. These coatings are useful in packaging to contain active ingredients, such as fragrances, or to protect contents from detrimental substances, such as oxygen, water, grease, or other chemicals of concern. They also are used to prevent visual changes or mechanical degradation that might occur if the paper becomes saturated. The performance and underlying mechanism depends on the barrier coating type and, in particular, on whether the barrier coating is designed to prevent diffusive or capillary transport. Estimates on the basis of fundamental transport phenomena and data from a broad screening of different barrier materials can be used to understand the limits of various approaches to construct barrier coatings. These estimates also can be used to create basic design rules for general classes of barrier coatings.


1990 ◽  
Vol 122 (2) ◽  
pp. 191-200 ◽  
Author(s):  
C. G. J. Sweep ◽  
Margreet D. Boomkamp ◽  
István Barna ◽  
A. Willeke Logtenberg ◽  
Victor M. Wiegant

Abstract The effect of intracerebroventricular (lateral ventricle) administration of arginine8-vasopressin (AVP) on the concentration of β-endorphin immunoreactivity in the cerebrospinal fluid obtained from the cisterna magna was studied in rats. A decrease was observed 5 min following injection of 0.9 fmol AVP. No statistically significant changes were found 5 min after intracerebroventricular treatment of rats with 0.09 or 9 fmol. The decrease induced by 0.9 fmol AVP was of short duration and was found 5 min after treatment but not 10 and 20 min. Desglycinamide9-AVP (0.97 fmol), [pGlu4, Cyt6]-AVP-(4–9) (1.44 fmol), Nα-acetyl-AVP (0.88 fmol), lysine8-vasopressin (0.94 fmol) and oxytocin (1 fmol) when intracerebroventricularly injected did not affect the levels of β-endorphin immunoreactivity in the cerebrospinal fluid 5 min later. This suggests that the intact AVP-(1–9) molecule is required for this effect. Intracerebroventricular pretreatment of rats with the vasopressin V1-receptor antagonist d(CH2)5Tyr(Me)AVP (8.63 fmol) completely blocked the effect of AVP (0.9 fmol). In order to investigate further the underlying mechanism, the effect of AVP on the disappearance from the cerebrospinal fluid of exogenously applied β-endorphin was determined. Following intracerebroventricular injection of 1.46 pmol camel β-endorphin-(1–31), the β-endorphin immunoreactivity levels in the cisternal cerebrospinal fluid increased rapidly, and reached peak values at 10 min. The disappearance of β-endorphin immunoreactivity from the cerebrospinal fluid then followed a biphasic pattern with calculated half-lifes of 28 and 131 min for the initial and the terminal phase, respectively. Treatment of rats with AVP (0.9 fmol; icv) during either phase (10, 30, 55 min following intracerebroventricular administration of 1.46 pmol β-endorphin-(1–31)) significantly enhanced the disappearance of β-endorphin immunoreactivity from the cerebrospinal fluid. The data suggest that vasopressin plays a role in the regulation of β-endorphin levels in the cerebrospinal fluid by modulating clearance mechanisms via V1-receptors in the brain.


Sign in / Sign up

Export Citation Format

Share Document