scholarly journals Whole-exome sequencing identifies a novel homozygous frameshift mutation in the PROM1 gene as a causative mutation in two patients with sporadic retinitis pigmentosa

2016 ◽  
Vol 37 (6) ◽  
pp. 1528-1534 ◽  
Author(s):  
SANMEI LIU ◽  
LAN XIE ◽  
JUN YUE ◽  
TAO MA ◽  
CHUNYAN PENG ◽  
...  
2021 ◽  
Vol 31 (2) ◽  
pp. 264-265
Author(s):  
So Takeuchi ◽  
Takuya Takeichi ◽  
Yasutoshi Ito ◽  
Kana Tanahashi ◽  
Yoshinao Muro ◽  
...  

2017 ◽  
Vol 27 (4) ◽  
pp. 614-624 ◽  
Author(s):  
Monika Weisz Hubshman ◽  
Sanne Broekman ◽  
Erwin van Wijk ◽  
Frans Cremers ◽  
Alaa Abu-Diab ◽  
...  

2021 ◽  
Vol 67 (1) ◽  
pp. 111-116
Author(s):  
Kirill Zagorodnev ◽  
Aleksandr Romanko ◽  
Uliy Gorgul ◽  
Aleksandr Ivantsov ◽  
Anna Sokolenko ◽  
...  

The search for the new hereditary mutations and a precise molecular genetic diagnosis that determines the causative mutation in each specific case of hereditary breast cancer (BC) is a clinically important task since it helps to define the personal therapeutic approach and increase the effectiveness of preventive measures. Using whole-exome sequencing (WES) we analyzed the full spectrum of hereditary variations in 49 Russian patients with clinical signs of a hereditary disease which allowed us to compile a list of 229 candidate probably pathogenic germ-line variants. Then, the selected candidate mutations were validated by Sanger sequencing and molecular-epidemiological studies, the predisposing roles of three oncologically relevant mutations (USP39 c.*208G>C, SLIT3 p.Arg154Cys, and CREB3 p.Lys157Glu) were confirmed. Our candidate genes are first mentioned in connection with the hereditary risk of BC. The final proofs of the causative roles of these variants could be obtained through functional tests as well as via the analysis of the mutations segregation in BC families.


2018 ◽  
Vol 29 (9) ◽  
pp. 2348-2361 ◽  
Author(s):  
Amelie T. van der Ven ◽  
Dervla M. Connaughton ◽  
Hadas Ityel ◽  
Nina Mann ◽  
Makiko Nakayama ◽  
...  

BackgroundCongenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of kidney disease in the first three decades of life. Previous gene panel studies showed monogenic causation in up to 12% of patients with CAKUT.MethodsWe applied whole-exome sequencing to analyze the genotypes of individuals from 232 families with CAKUT, evaluating for mutations in single genes known to cause human CAKUT and genes known to cause CAKUT in mice. In consanguineous or multiplex families, we additionally performed a search for novel monogenic causes of CAKUT.ResultsIn 29 families (13%), we detected a causative mutation in a known gene for isolated or syndromic CAKUT that sufficiently explained the patient’s CAKUT phenotype. In three families (1%), we detected a mutation in a gene reported to cause a phenocopy of CAKUT. In 15 of 155 families with isolated CAKUT, we detected deleterious mutations in syndromic CAKUT genes. Our additional search for novel monogenic causes of CAKUT in consanguineous and multiplex families revealed a potential single, novel monogenic CAKUT gene in 19 of 232 families (8%).ConclusionsWe identified monogenic mutations in a known human CAKUT gene or CAKUT phenocopy gene as the cause of disease in 14% of the CAKUT families in this study. Whole-exome sequencing provides an etiologic diagnosis in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT.


2011 ◽  
Vol 88 (2) ◽  
pp. 201-206 ◽  
Author(s):  
Stephan Züchner ◽  
Julia Dallman ◽  
Rong Wen ◽  
Gary Beecham ◽  
Adam Naj ◽  
...  

2011 ◽  
Vol 19 (10) ◽  
pp. 1109-1109
Author(s):  
Sara J Bowne ◽  
Marian M Humphries ◽  
Lori S Sullivan ◽  
Paul F Kenna ◽  
Lawrence CS Tam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document