scholarly journals Apocynin protects mesangial cells from lipopolysaccharide-induced inflammation by exerting heme oxygenase 1-mediated monocyte chemoattractant protein-1 suppression

2017 ◽  
Vol 40 (4) ◽  
pp. 1294-1301 ◽  
Author(s):  
Nirmal Prasad Bhatt ◽  
Jin-Young Park ◽  
Hee Jae Lee ◽  
Sung-Soo Kim ◽  
Yong-Soo Kwon ◽  
...  
2006 ◽  
Vol 100 (2) ◽  
pp. 162-166 ◽  
Author(s):  
Tomoki Shokawa ◽  
Masao Yoshizumi ◽  
Hideya Yamamoto ◽  
Shinji Omura ◽  
Mamoru Toyofuku ◽  
...  

2001 ◽  
Vol 12 (8) ◽  
pp. 1659-1667
Author(s):  
BRAD H. ROVIN ◽  
LING LU ◽  
ANNA COSIO

Abstract. In the kidney an uncontrolled inflammatory response to an acute insult may lead to chronic inflammation, permanent tissue damage, and progressive renal insufficiency. Resolution of acute inflammation likely is dependent on endogenous regulatory mechanisms activated in parallel with mediators of renal inflammation. These mechanisms are postulated to attenuate the renal expression of proinflammatory cytokines, including the chemokines responsible for recruiting leukocytes to the kidney, thus facilitating the transition from inflammation to healing. To understand the regulation of the inflammatory response within the kidney, the effects of anti-inflammatory J series cyclopentenone prostaglandins on chemokine production by human mesangial cells were examined. Treatment of mesangial cells with prostaglandin J2and 15-deoxy-Δ12,14-prostaglandin J2blocked interleukin-1β—induced monocyte chemoattractant protein-1 mRNA expression and protein production. This correlated with failure of the transcription factor nuclear factor-κB (NF-κB) to translocate to the nucleus and bind to its recognition motif, a step required for cytokine-induced monocyte chemoattractant protein-1 gene activation. NF-κB failed to translocate because the cyclopentenone prostaglandins attenuated degradation of the NF-κB inhibitor IκB-α. These data suggest that certain prostaglandins can limit the extent of renal chemokine expression and thus may have an important role in resolving renal inflammation.


2005 ◽  
Vol 288 (4) ◽  
pp. H1836-H1843 ◽  
Author(s):  
Kan Saito ◽  
Nobukazu Ishizaka ◽  
Toru Aizawa ◽  
Masataka Sata ◽  
Naoyuki Iso-o ◽  
...  

Long-term administration of angiotensin II causes myocardial loss and cardiac fibrosis. We previously found iron deposition in the heart of the angiotensin II-infused rat, which may promote angiotensin II-induced cardiac damage. In the present study, we have investigated whether an iron chelator (deferoxamine) and a free radical scavenger (T-0970) affect the angiotensin II-induced upregulation of transforming growth factor-β1 (TGF-β1). Angiotensin II infusion for 7 days caused a robust increase in TGF-β1 mRNA expression in vascular smooth muscle cells, myofibroblast-like cells, and migrated monocytes/macrophages. T-0970 and deferoxamine suppressed the upregulation of TGF-β1 mRNA and reduced the extent of cardiac fibrosis in the heart of rats treated with angiotensin II. These agents blocked the angiotensin II-induced upregulation of heme oxygenase-1, a potent oxidative and cellular stress-responsive gene, but they did not significantly affect systolic blood pressure or plasma levels of aldosterone. In addition, T-0970 and deferoxamine suppressed the angiotensin II-induced upregulation of monocyte chemoattractant protein-1 in the heart. These results collectively suggest that iron and the iron-mediated generation of reactive oxygen species may contribute to angiotensin II-induced upregulation of profibrotic and proinflammatory genes, such as TGF-β1 and monocyte chemoattractant protein-1.


Sign in / Sign up

Export Citation Format

Share Document