scholarly journals Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice

Author(s):  
Jinying Wei ◽  
Haijiang Wu ◽  
Haiqiang Zhang ◽  
Fang Li ◽  
Shurui Chen ◽  
...  
2008 ◽  
Vol 372 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Kazuhiro Hasegawa ◽  
Shu Wakino ◽  
Kyoko Yoshioka ◽  
Satoru Tatematsu ◽  
Yoshikazu Hara ◽  
...  

2015 ◽  
Vol 99 (11) ◽  
pp. 2311-2316 ◽  
Author(s):  
Swati Jain ◽  
Daniel Keys ◽  
Danica Ljubanovic ◽  
Charles L. Edelstein ◽  
Alkesh Jani

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
XiaoJuan Zhu ◽  
ShengHua Wu ◽  
HanCheng Guo

Background. It has been documented that vitamin D supplementation showed an improvement of symptoms of diabetic nephropathy; however, the underlying mechanisms remain unknown. We here tested the hypothesis that active vitamin D is able to up-regulate AKT/UCP2 signaling to alleviate oxidative stress of renal tubular cell line HK2.Methods. There are eight groups in the present study: normal glucose, osmotic control (5.5 mmol/L D-glucose+24.5 mmol/L D-mannitol), NAC control (30 mmol/L D-glucose + 1.0 mmol/L N-Methylcysteine), high glucose, high glucose+VD, high glucose (HG)+VD+siVDR, HG+VD+AKT inhibitor (AI), and high glucose+VD+UCP2 inhibitor (Gelipin). Concentration of superoxide dismutase (SOD) and malondialdehyde (MDA) was analyzed by ELISA. Reactive oxygen species (ROS), mitochondrial membrane potential and apoptosis were measured by flow cytometry. JC-1 was evaluated by flow cytometry. The presence of VDR, AKT, and UCP2 in HK cells was assessed using RT-PCR and western blot analyses.Results. VD administration significantly upregulated the SOD activation and downregulated MDA levels compared to HG group. siVDR, AKT inhibitor, and UCP2 inhibitor significantly suppressed the activation of SOD and increased the expression of MDA compared to VD group. ROS generation and apoptosis of HK2 cells in HG+VD group were significantly lower than those in HG, HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group. ΔΨm in HG+VD group was obviously higher than those in HG, HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group. Decreased mRNA and protein levels of VDR, p-AKT, and UCP2 were observed in HG+VD+siVDR, HG+VD+AI, and HG+VD+Gelipin group compared to those in HG+VD group.Conclusions. siVDR, AKT inhibitor, and UCP2 inhibitor elevated the ROS and apoptosis of HK2 cells while attenuating the mitochondrial membrane potential, suggesting that vitamin D protects renal tubular cell from high glucose by AKT/UCP2 signaling pathway.


2020 ◽  
Vol 319 (6) ◽  
pp. F1015-F1026
Author(s):  
Wei Zhang ◽  
Yinjie Guan ◽  
George Bayliss ◽  
Shougang Zhuang

Sepsis-associated acute kidney injury (SA-AKI) is associated with high mortality rates, but clinicians lack effective treatments except supportive care or renal replacement therapies. Recently, histone deacetylase (HDAC) inhibitors have been recognized as potential treatments for acute kidney injury and sepsis in animal models; however, the adverse effect generated by the use of pan inhibitors of HDACs may limit their application in people. In the present study, we explored the possible renoprotective effect of a selective class IIa HDAC inhibitor, TMP195, in a murine model of SA-AKI induced by lipopolysaccharide (LPS). Administration of TMP195 significantly reduced increased serum creatinine and blood urea nitrogen levels and renal damage induced by LPS; this was coincident with reduced expression of HDAC4, a major isoform of class IIa HDACs, and elevated histone H3 acetylation. TMP195 treatment following LPS exposure also reduced renal tubular cell apoptosis and attenuated renal expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, two biomarkers of tubular injury. Moreover, LPS exposure resulted in increased expression of BAX and cleaved caspase-3 and decreased expression of Bcl-2 and bone morphogenetic protein-7 in vivo and in vitro; TMP195 treatment reversed these responses. Finally, TMP195 inhibited LPS-induced upregulation of multiple proinflammatory cytokines/chemokines, including intercellular adhesion molecule-1, monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin-1β, and accumulation of inflammatory cells in the injured kidney. Collectively, these data indicate that TMP195 has a powerful renoprotective effect in SA-AKI by mitigating renal tubular cell apoptosis and inflammation and suggest that targeting class IIa HDACs might be a novel therapeutic strategy for the treatment of SA-AKI that avoids the unintended adverse effects of a pan-HDAC inhibitor.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0212818
Author(s):  
Gyu-Tae Shin ◽  
Hwa Joung Lee ◽  
Ji Eun Park

PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0155190 ◽  
Author(s):  
Li-Li Wen ◽  
Chien-Yu Lin ◽  
Hsiu-Chu Chou ◽  
Chih-Cheng Chang ◽  
Hau-Yin Lo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document