scholarly journals Nucleolin promotes Ang�II‑induced phenotypic transformation of vascular smooth muscle cells via interaction with tropoelastin mRNA

Author(s):  
Li Fang ◽  
Peng‑Fei Zhang ◽  
Kang‑Kai Wang ◽  
Zhi‑Lin Xiao ◽  
Mei Yang ◽  
...  
2005 ◽  
Vol 108 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Giovanna CASTOLDI ◽  
Serena REDAELLI ◽  
Willy M. M. van de GREEF ◽  
Cira R. T. di GIOIA ◽  
Giuseppe BUSCA ◽  
...  

Ang II (angiotensin II) has multiple effects on vascular smooth muscle cells through the modulation of different classes of genes. Using the mRNA differential-display method to investigate gene expression in rat aortic smooth muscle cells in culture in response to 3 h of Ang II stimulation, we observed that Ang II down-regulated the expression of a member of the family of transmembrane receptors for Wnt proteins that was identified as Fzd2 [Fzd (frizzled)-2 receptor]. Fzds are a class of highly conserved genes playing a fundamental role in the developmental processes. In vitro, time course experiments demonstrated that Ang II induced a significant increase (P<0.05) in Fzd2 expression after 30 min, whereas it caused a significant decrease (P<0.05) in Fzd2 expression at 3 h. A similar rapid up-regulation after Ang II stimulation for 30 min was evident for TGFβ1 (transforming growth factor β1; P<0.05). To investigate whether Ang II also modulated Fzd2 expression in vivo, exogenous Ang II was administered to Sprague–Dawley rats (200 ng·kg−1 of body weight·min−1; subcutaneously) for 1 and 4 weeks. Control rats received normal saline. After treatment, systolic blood pressure was significantly higher (P<0.01), whereas plasma renin activity was suppressed (P<0.01) in Ang II- compared with the saline-treated rats. Ang II administration for 1 week did not modify Fzd2 expression in aorta of Ang II-treated rats, whereas Ang II administration for 4 weeks increased Fzd2 mRNA expression (P<0.05) in the tunica media of the aorta, resulting in a positive immunostaining for fibronectin at this time point. In conclusion, our data demonstrate that Ang II modulates Fzd2 expression in aortic smooth muscle cells both in vitro and in vivo.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Augusto Montezano ◽  
Francisco Rios ◽  
Livia Camargo ◽  
Roberto Palacios‐Ramirez ◽  
Antoine Tarjus ◽  
...  

1990 ◽  
Vol 258 (5) ◽  
pp. C849-C854 ◽  
Author(s):  
S. L. Linas ◽  
R. Marzec-Calvert ◽  
M. E. Ullian

Dietary K depletion (KD) results in increases in the number of angiotensin II (ANG II) receptors and prevents ANG II-induced downregulation of ANG II receptors in membrane preparations of vessels from KD animals. Because dietary KD results in changes in factors other than K, we K depleted vascular smooth muscle cells (VSMC) in culture to determine the specific effects of KD on ANG II receptor expression and processing. Scatchard analysis of ANG II uptake at 4 degrees C revealed that the number of surface receptors was increased by 37% in cells in which K had been reduced by 45%. This increase also occurred in the presence of cycloheximide. To determine the effect of KD on receptor processing, we measured the number of surface receptors after exposure to ANG II in concentrations sufficient to cause down-regulation. After 30-min exposure to ANG II, the number of surface receptors was reduced by 63% in control cells but only 33% in KD cells. Thirty minutes after withdrawing ANG II, surface binding returned to basal levels in control cells but was still reduced by 20% in KD cells. To determine the functional significance of impaired receptor processing, we measured ANG II uptake at 21 degrees C. Uptake at 21 degrees C depends on the functional number of receptors, i.e., the absolute number of surface receptors and the rate at which receptors are recycled to the surface after ANG II binding. ANG II uptake at 21 degrees C was reduced by 50% in KD cells.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 277 (2) ◽  
pp. H515-H523 ◽  
Author(s):  
Nobuya Fujita ◽  
Yusuke Furukawa ◽  
Naoki Itabashi ◽  
Yasushi Tsuboi ◽  
Michio Matsuda ◽  
...  

The physiological role of the vasoconstrictive hormones arginine vasopressin (AVP) and angiotensin II (ANG II) in the development of vascular hyperplasia is still unclear. We examined the effects of these hormones on cell cycle regulation of cultured rat vascular smooth muscle cells (VSMC). AVP and ANG II were able to induce G1/S transition and DNA synthesis in serum-starved quiescent VSMC but failed to promote further progression into G2/M phases. AVP and ANG II enhanced the expression and activity of cdk2, cyclin E, and proliferating cell nuclear antigen but did not induce expression of cdc2/cyclin B complex, a critical regulator of G2/M transition. The failure of cdc2 mRNA induction was found to be caused by a defect in cdc2 promoter activation. Binding of free E2F-1 to the cdc2 promoter did not occur in hormone-treated VSMC, which may account for the defective induction of cdc2. The absence of cdc2 promoter activation and G2/M transition may be important for the prevention of hyperplasia under physiological conditions but underlies the hypertrophy of VSMC.


Sign in / Sign up

Export Citation Format

Share Document