Bone marrow-derived dendritic cells incorporate and process hydrophobized polysaccharide/oncoprotein complex as antigen presenting cells.

Author(s):  
L Wang ◽  
H Ikeda ◽  
Y Ikuta ◽  
M Schmitt ◽  
Y Miyahara ◽  
...  
1999 ◽  
Vol 90 (6) ◽  
pp. 1115-1124 ◽  
Author(s):  
Linda M. Liau ◽  
Keith L. Black ◽  
Robert M. Prins ◽  
Steven N. Sykes ◽  
Pier-Luigi DiPatre ◽  
...  

Object. An approach toward the treatment of intracranial gliomas was developed in a rat experimental model. The authors investigated the ability of “professional” antigen-presenting cells (dendritic cells) to enhance host antitumor immune responses when injected as a vaccine into tumor-bearing animals.Methods. Dendritic cells, the most potent antigen-presenting cells in the body, were isolated from rat bone marrow precursors stimulated in vitro with granulocyte—macrophage colony-stimulating factor (GM-CSF) and interleukin-4. Cultured cell populations were confirmed to be functional antigen-presenting cells on the basis of expressed major histocompatibility molecules, as analyzed by fluorescence-activated cell sorter cytofluorography. These dendritic cells were then pulsed (cocultured) ex vivo with acid-eluted tumor antigens from 9L glioma cells. Thirty-eight adult female Fischer 344 rats harboring 7-day-old intracranial 9L tumors were treated with three weekly subcutaneous injections of either control media (10 animals), unpulsed dendritic cells (six animals), dendritic cells pulsed with peptides extracted from normal rat astrocytes (10 animals), or 9L tumor antigen—pulsed dendritic cells (12 animals). The animals were followed for survival. At necropsy, the rat brains were removed and examined histologically, and spleens were harvested for cell-mediated cytotoxicity assays.The results indicate that tumor peptide-pulsed dendritic cell therapy led to prolonged survival in rats with established intracranial 9L tumors implanted 7 days prior to the initiation of vaccine therapy in vivo. Immunohistochemical analyses were used to document a significantly increased perilesional and intratumoral infiltration of CD8+ and CD4+ T cells in the groups treated with tumor antigen—pulsed dendritic cells compared with the control groups. In addition, the results of in vitro cytotoxicity assays suggest that vaccination with these peptide-pulsed dendritic cells can induce specific cytotoxic T lymphocytes against 9L tumor cells.Conclusions. Based on these results, dendritic antigen-presenting cells pulsed with acid-eluted peptides derived from autologous tumors represent a promising approach to the immunotherapy of established intracranial gliomas, which may serve as a basis for designing clinical trials in patients with brain tumors.


2018 ◽  
Vol 67 (9) ◽  
pp. 1449-1459 ◽  
Author(s):  
Hakimeh Ebrahimi-Nik ◽  
William L. Corwin ◽  
Tatiana Shcheglova ◽  
Alok Das Mohapatra ◽  
Ion I. Mandoiu ◽  
...  

2003 ◽  
Vol 33 (12) ◽  
pp. 3242-3254 ◽  
Author(s):  
Franz-Georg Hanisch ◽  
Tilo Schwientek ◽  
Michael S. Von Bergwelt-Baildon ◽  
Joachim L. Schultze ◽  
Olivera Finn

2009 ◽  
Vol 1 ◽  
pp. OED.S2813 ◽  
Author(s):  
Jared E. Knickelbein ◽  
Simon C. Watkins ◽  
Paul G. Mcmenamin ◽  
Robert L. Hendricks

The composition and location of professional antigen presenting cells (APC) varies in different mucosal surfaces. The cornea, long considered an immune-privileged tissue devoid of APCs, is now known to host a heterogeneous network of bone marrow-derived cells. Here, we utilized transgenic mice that express enhanced green fluorescent protein (EGFP) from the CD 11c promoter (pCD11c) in conjunction with immunohistochemical staining to demonstrate an interesting stratification of APCs within non-inflamed murine corneas. pCD11c+ dendritic cells (DCs) reside in the basal epithelium, seemingly embedded in the basement membrane. Most DCs express MHC class II on at least some dendrites, which extend up to 50 μm in length and traverse up 20 μm tangentially towards the apical surface of the epithelium. The DC density diminishes from peripheral to central cornea. Beneath the DCs and adjacent to the stromal side of the basement membrane reside pCD11c–CD11b+ putative macrophages that express low levels of MHC class II. Finally, MHC class II–pCD11c–CD11b+ cells form a network throughout the remainder of the stroma. This highly reproducible stratification of bone marrow-derived cells is suggestive of a progression from an APC function at the exposed corneal surface to an innate immune barrier function deeper in the stroma.


1993 ◽  
Vol 178 (6) ◽  
pp. 2055-2066 ◽  
Author(s):  
M H Kosco-Vilbois ◽  
D Gray ◽  
D Scheidegger ◽  
M Julius

This study was designed to investigate whether follicular dendritic cells (FDC) can activate B cells to a state in which they can function as effective antigen-presenting cells (APC). High buoyant density (i.e., resting) B cells specific for 2,4-dinitro-fluorobenzene (DNP) were incubated with DNP-ovalbumin (OVA) bearing FDC, after which their capacity to process and present to an OVA-specific T cell clone was assessed. The efficacies of alternative sources of antigen and activation signals in the induction of B cell APC function were compared with those provided by FDC. Only FDC and Sepharose beads coated with anti-immunoglobulin (Ig)kappa monoclonal antibody provided the necessary stimulus. FDC carrying inappropriate antigens also induced B cell APC function in the presence of exogenous DNP-OVA. However, in circumstances where soluble DNP-OVA was limiting, FDC bearing complexes containing DNP, which could crosslink B cell Ig receptors, induced the most potent APC function. Analysis by flow cytometry revealed that within 24 h of coculture with FDC, a significant percentage of B cells increased in size and expressed higher levels of major histocompatibility complex class II. By 48 h, an upregulation of the costimulatory molecule, B7/BB1, occurred, but only when exposed to the FDC bearing DNP. Taken together, the results demonstrate that FDC have the capacity to activate resting B cells to a state in which they can function as APC for T cells. The stimuli that FDC provide may include: (a) an antigen-dependent signal that influences the upregulation of B7/BB1; and (b) possibly a signal independent of crosslinking mIg that results in Ig internalization. The relevance of these findings to the formation of germinal centers and maintenance of the humoral response is discussed.


Sign in / Sign up

Export Citation Format

Share Document