scholarly journals Effect of astragaloside IV and the role of nuclear receptor RXRα in human peritoneal mesothelial cells in high glucose‑based peritoneal dialysis fluids

Author(s):  
Weiwei Zhu ◽  
Xin Zhang ◽  
Kun Gao ◽  
Xufang Wang
2010 ◽  
Vol 26 (3) ◽  
pp. 1046-1052 ◽  
Author(s):  
T. O. Bender ◽  
M. Bohm ◽  
K. Kratochwill ◽  
R. Vargha ◽  
A. Riesenhuber ◽  
...  

2000 ◽  
Vol 11 (11) ◽  
pp. 1969-1979
Author(s):  
TAKAFUMI ITO ◽  
NORIAKI YORIOKA ◽  
MASAO YAMAMOTO ◽  
KATSUKO KATAOKA ◽  
MICHIO YAMAKIDO

Abstract. During continuous ambulatory peritoneal dialysis, the peritoneum is directly and continuously exposed to unphysiologic peritoneal dialysis fluid; the resulting mesothelial damage has been suggested to cause loss of ultrafiltration and dialysis efficacy. The present study investigated the effect of a high glucose concentration on cultured human peritoneal mesothelial cells to clarify the cause of decreased dialysis efficacy during prolonged peritoneal dialysis. High glucose caused a concentration-dependent decrease in cell proliferation, damage to the intercellular junctions, and excess production of transforming growth factor-β (TGF-β). The levels of intercellular junctional proteins (ZO-1, E-cadherin, and β-catenin) were decreased, and immuno-staining by anti—ZO-1 and anti— β-catenin antibodies became weaker and often discontinuous along the cell contour. Mannitol had similar but weaker effects at the same osmolality, and an anti—TGF-β neutralizing antibody reduced the effects of high glucose. Therefore, these effects were induced not only by glucose itself but also by hyperosmolality and by a glucose-induced increase of TGF-β. These findings suggest that the peritoneal mesothelium is damaged by prolonged peritoneal dialysis using high glucose dialysate and that impairment of the intercellular junctions of peritoneal mesothelial cells by high glucose dialysate induces peritoneal hyperpermeability and a progressive reduction in dialysis efficacy.


2010 ◽  
Vol 17 (5) ◽  
pp. 757-763 ◽  
Author(s):  
Jun Wu ◽  
Xiao Yang ◽  
Yun-Fang Zhang ◽  
Ya-Ning Wang ◽  
Mei Liu ◽  
...  

ABSTRACT The objective of this study was to investigate the effects of glucose-based peritoneal dialysis (PD) fluids and icodextrin-based PD fluids on the expression of Toll-like receptor 2 (TLR2)/TLR4 and subsequent ligand-induced mitogen-activated protein kinase (MAPK) and NF-κB signaling and tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) mRNA expression in human peritoneal mesothelial cells (HPMCs). A human peritoneal mesothelial cell line (HMrSV5) was stimulated with glucose-based and icodextrin-based peritoneal dialysis fluids. Cell viability was assessed using MTT [3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide]. TLR2/TLR4 expression was determined by real-time PCR, Western blotting, and an immunofluorescence assay. In addition, cells were pretreated with different PD solutions and then incubated with Pam3CSK4 or lipopolysaccharide (LPS), and the degrees of MAPK and NF-κB activation were reflected by detecting the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38, and p65, using a Western blot method. TNF-α and IL-1β mRNA expression was measured by real-time PCR. Glucose-based peritoneal dialysis fluids suppressed the expression of TLR2 and TLR4 proteins in HPMCs. Challenge of cells with either Pam3CSK4 or LPS resulted in impaired TNF-α and IL-1β production. Moreover, reduced TLR2 and TLR4 levels in glucose-based peritoneal dialysis solution-treated mesothelial cells were accompanied by reduced p42/44 (ERK1/2), JNK, p38 MAPK, and NF-κB p65 phosphorylation upon TLR ligand engagement. No significant changes in MAPK and NF-κB signaling and TNF-α and IL-1β mRNA expression were observed in icodextrin-based PD solution-treated mesothelial cells. Glucose-based PD solution, but not icodextrin-based PD solution, downregulates expression of TLR2/TLR4 by human peritoneal mesothelial cells and triggers hyporesponsiveness to pathogen-associated molecular patterns.


2002 ◽  
Vol 22 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Hunjoo Ha ◽  
Mi Kyung Cha ◽  
Hoo Nam Choi ◽  
Hi Bahl Lee

♦ Objective To compare the effects of different peritoneal dialysis solutions (PDS) on secretion of vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGFβ1), procollagen I C-terminal peptide (PICP), procollagen III N-terminal peptide (PIIINP), and fibronectin by cultured human peritoneal mesothelial cells (HPMC). ♦ Design Using M199 culture medium as control, commercial PDS containing 1.5% or 4.25% glucose and 40 mmol/L lactate [Dianeal 1.5 (D 1.5) and Dianeal 4.25 (D 4.25), respectively; Baxter Healthcare, Deerfield, Illinois, USA]; PDS containing 1.5% or 4.25% glucose with 25 mmol/L bicarbonate and 15 mmol/L lactate [Physioneal 1.5 (P 1.5) and Physioneal 4.25 (P 4.25), respectively; Baxter]; and PDS containing 7.5% icodextrin [Extraneal (E); Baxter] were tested. Growth-arrested and synchronized HPMC were continuously stimulated for 48 hours by test PDS diluted twofold with M199, TGFβ1 1 ng/mL, or different concentrations of icodextrin. VEGF, TGFβ1, and fibronectin secreted into the media were analyzed by ELISA, and PICP and PIIINP by radioimmunoassay. ♦ Results Dianeal 1.5, D 4.25, and P 4.25, but not P 1.5 and E, significantly increased VEGF secretion compared with control M199. D 4.25- and P 4.25-induced VEGF secretion was significantly higher than induction by D 1.5 and P 1.5, respectively, suggesting that high glucose may be involved in the induction of VEGF. Physioneal 1.5- and P 4.25-induced VEGF secretion was significantly lower than induction by D 1.5 and D 4.25, respectively, suggesting a role for glucose degradation products (GDP) in VEGF production. TGFβ1 secretion was significantly increased by D 4.25 and E. Icodextrin increased TGFβ1 secretion in a dose-dependent manner. All PDS tested significantly increased secretion of PIIINP compared with control. D 1.5- and D 4.25-induced PIIINP secretion was significantly higher than P 1.5, P 4.25, and E. Physioneal 4.25-induced PIIINP secretion was significantly higher than P 1.5, again implicating high glucose and GDP in PIIINP secretion by HPMC. There was no significant increase in PICP or fibronectin secretion using any of the PDS tested. Addition of TGFβ1 1 ng/mL into M199 control significantly increased VEGF, PICP, PIIINP, and fibronectin secretion by HPMC. ♦ Conclusions The present study provides direct evidence that HPMC can secrete VEGF, TGFβ1, and PIIINP in response to PDS, and that HPMC may be actively involved in the development and progression of the peritoneal membrane hyperpermeability and fibrosis observed in long-term PD patients. This study also suggests that both high glucose and GDP in PDS may play important roles in inducing VEGF and PIIINP production/secretion by HPMC.


Sign in / Sign up

Export Citation Format

Share Document