scholarly journals Linking and the Role of the Material Citation

Author(s):  
Jeremy Miller ◽  
Donat Agosti ◽  
Marcus Guidoti ◽  
Francisco Andres Rivera Quiroz

Citing the specimens used to describe new species or augment existing taxa is integral to the scholarship of taxonomic and related biodiversity-oriented publications. These so-called material citations (Darwin Core Term MaterialCitation), linked to the natural history collections in which they are archived, are the mechanism by which readers may return to the source material upon which reported observations are based. This is integral to the scientific nature of the project of documenting global biodiversity. Material citation records typically contain such information as the location and date associated with the collection of a specimen, along with other data, and taxonomic identification. Thus, material citations are a key line of evidence for biodiversity informatics, along with other evidence classes such as database records of specimens archived in natural history collections, human observations not linked to specimens, and DNA sequences that may or may not be linked to a specimen. Natural history collections are not completely databased and records of some occurrences are only available as material citations. In other cases, material citations can be linked to the record of the physical specimen in a collections database. Taxonomic treatments, sections of publications documenting the features or distribution of a related group of organisms (Catapano 2019), may contain citations of DNA sequences, which can be linked to database records. There is potential for bidirectional linking that could contribute data elements or entire records to collections and DNA databases, based on content found in material citations. We compare material citations data to other major sources of biodiversity records (preserved specimens, human observations, and material samples). We present pilot project data that reconcile material citations with their database records, and track all material citations across the taxonomic history of a species.

2002 ◽  
Vol 29 (3) ◽  
pp. 333-336
Author(s):  
PIOTR DASZKIEWICZ ◽  
MICHEL JEGU

ABSTRACT: This paper discusses some correspondence between Robert Schomburgk (1804–1865) and Adolphe Brongniart (1801–1876). Four letters survive, containing information about the history of Schomburgk's collection of fishes and plants from British Guiana, and his herbarium specimens from Dominican Republic and southeast Asia. A study of these letters has enabled us to confirm that Schomburgk supplied the collection of fishes from Guiana now in the Laboratoire d'Ichtyologie, Muséum National d'Histoire Naturelle, Paris. The letters of the German naturalist are an interesting source of information concerning the practice of sale and exchange of natural history collections in the nineteenth century in return for honours.


SLEEP ◽  
2015 ◽  
Vol 38 (3) ◽  
pp. 351-360 ◽  
Author(s):  
Julio Fernandez-Mendoza ◽  
Alexandros N. Vgontzas ◽  
Ilia Kritikou ◽  
Susan L. Calhoun ◽  
Duanping Liao ◽  
...  

2017 ◽  
Vol 96 ◽  
pp. 60-66 ◽  
Author(s):  
Paul R. King ◽  
Kerry T. Donnelly ◽  
Gary Warner ◽  
Michael Wade ◽  
Wilfred R. Pigeon

2007 ◽  
Vol 49 (25) ◽  
pp. 2379-2393 ◽  
Author(s):  
Yiannis S. Chatzizisis ◽  
Ahmet Umit Coskun ◽  
Michael Jonas ◽  
Elazer R. Edelman ◽  
Charles L. Feldman ◽  
...  

2015 ◽  
Vol 93 (8) ◽  
pp. 641-648 ◽  
Author(s):  
Azza Ramadan ◽  
Mark D. Wheatcroft ◽  
Adrian Quan ◽  
Krishna K. Singh ◽  
Fina Lovren ◽  
...  

Autophagy regulates cellular homeostasis and integrates the cellular pro-survival machinery. We investigated the role of autophagy in the natural history of murine abdominal aortic aneurysms (AAA). ApoE−/− mice were implanted with saline- or angiotensin II (Ang-II)-filled miniosmotic pumps then treated with either the autophagy inhibitor chloroquine (CQ; 50 mg·(kg body mass)–1·day–1, by intraperitoneal injection) or saline. Ang-II-elicited aneurysmal expansion of the suprarenal aorta coupled with thrombus formation were apparent 8 weeks later. CQ had no impact on the incidence (50% for Ang-II compared with 46.2% for Ang-II + CQ; P = NS) and categorical distribution of aneurysms. The markedly reduced survival rate observed with Ang-II (57.1% for Ang-II compared with 100% for saline; P < 0.05) was unaffected by CQ (61.5% for Ang-II + CQ; P = NS compared with Ang-II). CQ did not affect the mean maximum suprarenal aortic diameter (1.91 ± 0.19 mm for Ang-II compared with 1.97 ± 0.21 mm for Ang-II + CQ; P = NS). Elastin fragmentation, collagen accumulation, and smooth muscle attrition, which were higher in Ang-II-treated mice, were unaffected by CQ treatment. Long-term CQ administration does not affect the natural history and prognosis of experimental AAA, suggesting that global loss of autophagy is unlikely to be a causal factor in the development of aortic aneurysms. Manipulation of autophagy as a mechanism to reduce AAA may need re-evaluation.


2018 ◽  
Vol 374 (1763) ◽  
pp. 20170405 ◽  
Author(s):  
Heather M. Kharouba ◽  
Jayme M. M. Lewthwaite ◽  
Rob Guralnick ◽  
Jeremy T. Kerr ◽  
Mark Vellend

Over the past two decades, natural history collections (NHCs) have played an increasingly prominent role in global change research, but they have still greater potential, especially for the most diverse group of animals on Earth: insects. Here, we review the role of NHCs in advancing our understanding of the ecological and evolutionary responses of insects to recent global changes. Insect NHCs have helped document changes in insects' geographical distributions, phenology, phenotypic and genotypic traits over time periods up to a century. Recent work demonstrates the enormous potential of NHCs data for examining insect responses at multiple temporal, spatial and phylogenetic scales. Moving forward, insect NHCs offer unique opportunities to examine the morphological, chemical and genomic information in each specimen, thus advancing our understanding of the processes underlying species’ ecological and evolutionary responses to rapid, widespread global changes. This article is part of the theme issue ‘Biological collections for understanding biodiversity in the anthropocene’.


2021 ◽  
Vol 109 (2) ◽  
Author(s):  
Eric J. Hilton ◽  
Gregory J. Watkins-Colwell ◽  
Sarah K. Huber

Sign in / Sign up

Export Citation Format

Share Document