scholarly journals Magnetization of magnetically inhomogeneous Sr2FeMoO6-δ nanoparticles

2021 ◽  
Vol 7 (3) ◽  
pp. 85-90
Author(s):  
Gunnar Suchaneck

Magnetization is a key property of magnetic materials. Nevertheless, a satisfactory, analytical description of the temperature dependence of magnetization in double perovskites such as strontium ferromolybdate is still missing. In this work, we develop, for the very first time, a model of the magnetization of nanosized, magnetically inhomogeneous Sr2FeMoO6-δ nanoparticles. The temperature dependence of magnetization was approximated by an equation consisting of a Bloch-law spin wave term, a higher order spin wave correction, both taking into account the temperature dependence of the spin-wave stiffness, and a superparamagnetic term including the Langevin function. In the limit of pure ferromagnetic behavior, the model is applicable also to SFMO ceramics. In the vicinity of the Curie temperature (T/TC > 0.85), the model fails.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alex. S. Jenkins ◽  
Lara San Emeterio Alvarez ◽  
Samh Memshawy ◽  
Paolo Bortolotti ◽  
Vincent Cros ◽  
...  

AbstractNiFe-based vortex spin-torque nano-oscillators (STNO) have been shown to be rich dynamic systems which can operate as efficient frequency generators and detectors, but with a limitation in frequency determined by the gyrotropic frequency, typically sub-GHz. In this report, we present a detailed analysis of the nature of the higher order spin wave modes which exist in the Super High Frequency range (3–30 GHz). This is achieved via micromagnetic simulations and electrical characterisation in magnetic tunnel junctions, both directly via the spin-diode effect and indirectly via the measurement of the coupling with the gyrotropic critical current. The excitation mechanism and spatial profile of the modes are shown to have a complex dependence on the vortex core position. Additionally, the inter-mode coupling between the fundamental gyrotropic mode and the higher order modes is shown to reduce or enhance the effective damping depending upon the sense of propagation of the confined spin wave.


Author(s):  
Gereon Goldbeck ◽  
Gerd Bramerdorfer ◽  
Wolfgang Amrhein ◽  
Josef Hinterdorfer ◽  
Bernhard Weis

2009 ◽  
Vol 43 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Gerald J. Schneider ◽  
D. Göritz

A novel theory is presented which allows, for the first time, the analytical description of small-angle scattering experiments on anisotropic shaped clusters of nanoparticles. Experimentally, silica-filled rubber which is deformed is used as an example. The silica can be modelled by solid spheres which form clusters. The experiments demonstrate that the clusters become anisotropic as a result of the deformation whereas the spheres are not affected. A comparison of the newly derived model function and the experiments provides, for the first time, microscopic evidence of the inhomogeneous deformation of clusters in the rubbery matrix.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 447-450
Author(s):  
SANG-JAE KIM ◽  
TAKESHI HATANO

c-axis micro-bridges of La 2-x Sr x CuO 4 ( LSCO ) single crystals were fabricated by the focused-ion-beam (FIB) etching method. Small rectangular LSCO pieces were fabricated by cutting and grinding single crystals of underdoped LSCO of x=0.09. The size of LSCO single crystals between electrodes was cut to 20×40μm2 in ab-plane by using the FIB etching method. Superconductor-insulator-superconductor (SIS) like-branch structures on I-V curves of the LSCO stacks were observed for the first time. The branch structures exhibited voltage jumps of several tens mV in the range of from 1.7 K to 5 K with temperature dependence. When the temperature is changed from 5 K to 1.7 K , the critical current and the next branch split into a few of small voltage jumps with the intervals of several mV in the range of from 0.1 mV and 2.0 mV .


1969 ◽  
Vol 22 (1) ◽  
pp. 83 ◽  
Author(s):  
RL Martin ◽  
IM Stewart

The preparations are reported of an extended series of compounds of the type ML2X4 where M is Mn, Fe, Co, or Ni; X is Cl or Br; and L is analytically identical with dithioacetylacetone. ��� Electronic, infrared, and Mossbauer spectra together with the temperature dependence of the magnetism (80-300�K) of these compounds establish-contrary to previous suggestions in the literature-that they should be properly formulated as tetrahalometallate salts of the 3,5- dimethyl-1,2-dithiolium cation. Simple salts of this cation (such as the iodide) have also been isolated. ��� During the course of this work salts (I- and [CoCl4]2-) of the hitherto unknown 3,5-dimethyl-1,2-diselenolium ion were synthesized and characterized for the first time.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
R. D. Firouz-Abadi ◽  
M. Rahmanian ◽  
M. Amabili

The present study considers the free vibration analysis of moderately thick conical shells based on the Novozhilov theory. The higher order governing equations of motion and the associate boundary conditions are obtained for the first time. Using the Frobenius method, exact base solutions are obtained in the form of power series via general recursive relations which can be applied for any arbitrary boundary conditions. The obtained results are compared with the literature and very good agreement (up to 4%) is achieved. A comprehensive parametric study is performed to provide an insight into the variation of the natural frequencies with respect to thickness, semivertex angle, circumferential wave numbers for clamped (C), and simply supported (SS) boundary conditions.


1968 ◽  
Vol 28 (3) ◽  
pp. 213-214 ◽  
Author(s):  
N. Kroó ◽  
L. Pál ◽  
M. Arič ◽  
D. Jovič

2018 ◽  
Vol 98 (2) ◽  
Author(s):  
F. C. Yang ◽  
O. Hellman ◽  
M. S. Lucas ◽  
H. L. Smith ◽  
C. N. Saunders ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document