scholarly journals Grasshopper populations respond similarly to multiple moderate intensity livestock grazing treatments

2020 ◽  
Vol 29 (1) ◽  
pp. 67-69
Author(s):  
David H. Branson

Livestock grazing frequently affects grasshopper populations, but no prior studies have simultaneously examined a wide range of moderate intensity livestock grazing treatments in the Northern Great Plains. Grasshopper densities varied significantly between years, but five moderate grazing treatments, including both rotational and continuous grazing treatments, did not differentially affect grasshopper densities or species composition. Grasshopper populations appear resilient to different types of moderate grazing at this Northern Great Plains mixed-grass prairie site.

2015 ◽  
Vol 95 (6) ◽  
pp. 1101-1116 ◽  
Author(s):  
M. A. Sanderson ◽  
M. A. Liebig ◽  
J. R. Hendrickson ◽  
S. L. Kronberg ◽  
D. Toledo ◽  
...  

Sanderson, M. A., Liebig, M. A., Hendrickson, J. R., Kronberg, S. L., Toledo, D., Derner, J. D. and Reeves, J. L. 2015. Long-term agroecosystem research on northern Great Plains mixed-grass prairie near Mandan, North Dakota. Can. J. Plant Sci. 95: 1101–1116. In 1915, a stocking rate experiment was started on 101 ha of native mixed-grass prairie at the Northern Great Plains Research Laboratory (NGPRL) near Mandan, ND (100.9132N, 46.7710W). Here, we document the origin, evolution, and scientific outcomes from this long-term experiment. Four pastures of 12.1, 20.2, 28.3, and 40.5 ha were laid out and stocked continuously from May until October with 2-yr-old or yearling beef steers at four rates [initially 0.98, 1.39, 1.83, and 2.4 animal unit months ha−1]. The experiment generated some of the first information on the resilience of mixed-grass prairie to grazing and drought and relationships of livestock productivity to soil moisture for predictive purposes. After 1945, the experiment was reduced to the light and heavy stocking rate pastures only, which have been managed and grazed in approximately the same manner to the present day. The pastures were used to assess responses of vegetation to fertilizer in the 1950s and 1960s, develop grazing readiness tools in the 1990s, and assess remote sensing technologies in the 2000s. The long-term pastures currently serve as a unique resource to address contemporary questions dealing with drought, soil quality, carbon dynamics, greenhouse gas emissions, invasive species, and climate change.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 699 ◽  
Author(s):  
Steiner ◽  
Starks ◽  
Neel ◽  
Northup ◽  
Turner ◽  
...  

The Great Plains of the USA is one of largest expanses of prairie ecosystems in the world. Prairies have been extensively converted to other land uses. The remaining prairie ecosystems are important for livestock grazing and provide benefits including habitat for avian, terrestrial, and aquatic species, carbon regulation, and hydrologic function. While producers, land management agencies, and some researchers have promoted livestock management using rotational stocking for increased production efficiency and enhanced ecosystem function, scientific literature has not provided a consensus on whether rotational stocking results in increased plant biomass or animal productivity. To address this research need, we established long-term grazing research using an adaptive management framework to encompass a wide range of production and ecological interactions on native grassland pastures. This paper describes objectives, design, and implementation of the long-term study to evaluate productivity and ecological effects of beef cow–calf management and production under continuous system (CS) or rotational system (RS) on native tallgrass prairie. Findings from 2009 to 2015 indicate that plant biomass and animal productivity were similar in the two grazing management systems. There were some indicators that forage nutritive value of standing biomass and soil nutrient content were enhanced in the RS system compared with the CS, yet individual calf body weight (BW) at weaning was greater in the CS. This prepares us to engage with producers to help determine the focus for the next phase of the research.


1993 ◽  
Vol 73 (4) ◽  
pp. 765-778 ◽  
Author(s):  
W. D. Willms ◽  
P. G. Jefferson

The mixed prairie represents the most arid region of the Northern Great Plains in Canada. Approximately 6.5 M ha of the original total of 24 M ha have retained their native character. The native prairie supports about 5.3 M animal–unit–months or about 15% of all beef cattle present on the Canadian prairies. A large portion of the area is dominated by either needle-and-thread (Stipa comata Trin. + Rupr.) or western wheatgrass (Agropyron smithii Rydb.), both cool season grasses, and associated with blue grama [Bouteloua gracilis (H.B.K.) Lag. ex Steud.] a warm season grass. These species define the major plant communities of the mixed prairie and determine their production potential. However, their production is limited by available water during the growing season and by soil nutrients; factors which also influence their species composition. Grazing imposes a significant impact on the grasslands by altering the water and nutrient cycles, through defoliation and reduced plant litter, and eventually by affecting the species composition. Removing litter may reduce forage production by up to 60% and repeated defoliation will favour the more drought tolerant but less productive species. Forage production may be increased by seeding introduced species, which have a greater shoot to root ratio than native grasses, or with fertilizer application. Livestock production may be increased with the use of grazing systems. However, the benefits of each practice on the mixed prairie must be assessed in terms of their cost, their impact on the environment, and the reduced or lost value for other users. Key words: Biomass, above-ground, below-ground, water-use efficiency, reseeding, soil fertility, grazing efficiency


2014 ◽  
Vol 92 (1) ◽  
pp. 49-55 ◽  
Author(s):  
T.M. Radtke ◽  
J.R.N. Glasier ◽  
S.D. Wilson

Habitat alteration by exotic plant species can have profound effects on vertebrates, but its effects on invertebrates are less well-known. Crested wheatgrass (Agropyron cristatum (L.) Gaertn.) is a perennial grass that has been planted on >106ha of the Great Plains. We tested the hypothesis that invertebrate communities (especially ants) differed between native grasslands and A. cristatum stands, using pitfall traps in Saskatchewan and Montana. Ant species composition differed significantly between native grasslands and A. cristatum stands, but there were no differences in total ant abundance, the abundance of functional groups, or species richness. Ant species richness was significantly greater in Montana than Saskatchewan. In Saskatchewan, bare ground was positively related to total ant abundance and the abundance of “cold-climate specialist” and “opportunist” functional groups of ants. In Montana, the cover of forbs was positively related to total ant abundance. The abundances of individual ant species were not predicted by any vegetation characteristics, except for Formica obscuripes Forel, 1886, which increased significantly with litter. The total abundance of other invertebrates was greater in native grasslands than in A. cristatum stands, although not significantly so. Within each vegetation type, variation in ant communities may depend either directly on the effects of vegetation species composition, or indirectly via the effect of vegetation on other factors such as temperature. The results suggest that ant community composition was influenced more by variation within grasslands and between locations than by differences between native and exotic grasslands.


Sign in / Sign up

Export Citation Format

Share Document