scholarly journals Invasive plant benefits a native plant through plant-soil feedback but remains the superior competitor

NeoBiota ◽  
2021 ◽  
Vol 64 ◽  
pp. 119-136
Author(s):  
Sherri L. Buerdsell ◽  
Brook G. Milligan ◽  
Erik A. Lehnhoff

Plant soil feedback (PSF) occurs when a plant modifies soil biotic properties and those changes in turn influence plant growth, survival or reproduction. These feedback effects are not well understood as mechanisms for invasive plant species. Eragrostis lehmanniana is an invasive species that has extensively colonized the southwest US. To address how PSFs may affect E. lehmanniana invasion and native Bouteloua gracilis growth, soil inoculant from four sites of known invasion age at the Appleton-Whittell Audubon Research Ranch in Sonoita, AZ were used in a PSF greenhouse study, incorporating a replacement series design. The purpose of this research was to evaluate PSF conspecific and heterospecific effects and competition outcomes between the invasive E. lehmanniana and a native forage grass, Bouteloua gracilis. Eragrostis lehmannianaPSFs were beneficial to B. gracilis if developed in previously invaded soil. Plant-soil feedback contributed to competitive suppression of B. gracilis only in the highest ratio of E. lehmanniana to B. gracilis. Plant-soil feedback did not provide an advantage to E. lehmanniana in competitive interactions with B. gracilis at low competition levels but were advantageous to E. lehmanniana at the highest competition ratio, indicating a possible density-dependent effect. Despite being beneficial to B. gracilis under many conditions, E. lehmanniana was the superior competitor.

2016 ◽  
Vol 104 (5) ◽  
pp. 1243-1249 ◽  
Author(s):  
Conrad Schittko ◽  
Christian Runge ◽  
Marek Strupp ◽  
Sascha Wolff ◽  
Susanne Wurst

2020 ◽  
Vol 6 (2) ◽  
pp. 104-111

Plant invasion is a key element defining the community structure and dynamics and has become a major concern for the invasive plants to control the restoration of ecosystem diversity. In the same line of thought, soil microorganisms are also considered as a significant parameter of evolution and invasive plants' success. The variations usually overserved in the composition and structure of the soil microorganisms and the consequences of plant invasion. Therefore, understanding the concept of plant invasion and soil microorganism impact plant competition and plant-soil feedback would be a very important step forward in invasive plant control and ecosystem restoration. This review aims to provide a conceptual explanation of plant invasion, the role of soil microorganisms on plant growth and its effects on the native plant-soil feedback and also to demonstrate the importance of understanding the integrative soil microorganism impact on the competition between native and invasive plants along with its effects on plant-soil feedback.


Plant Ecology ◽  
2021 ◽  
Vol 222 (11) ◽  
pp. 1209-1224
Author(s):  
Xuemei Wang ◽  
Bangguo Yan ◽  
Liangtao Shi ◽  
Gangcai Liu

2021 ◽  
Author(s):  
Rutger A. Wilschut ◽  
Mark van Kleunen

Abstract Aims Drought events can alter the composition of plant and soil communities, and are becoming increasingly common and severe due to climate change. However, how droughts affect plant-soil feedbacks is still poorly understood. Plants accumulate species-specific rhizosphere communities, and droughts may have varying impacts across plant species and soil biota. We therefore tested the hypothesis that drought alters plant-soil feedbacks differently among closely related plant species that differ in their preferences for soil moisture. Methods In a two-phase greenhouse experiment, we first conditioned grassland soil with seven Geranium species and, as controls, we conditioned soil with a grass species or left soil unplanted. In the second phase, we grew the Geranium species in conspecific, grass-conditioned and unplanted soil, maintained soil moisture at 5 %, 10 % or 20 % (w/w), and determined biomass responses after 35 days. Results Independent of conditioning, plants showed a weaker performance with decreasing soil moisture. Under the driest conditions, soil conditioning by conspecifics most negatively affected relative root weight in comparison to plants growing in unplanted control soil, while the effects of conspecific conditioning on relative root weights were species-specific when compared to plants grown in grass-conditioned control soil. Conclusions We conclude that decreased soil moisture modified plant-soil feedback effects on biomass allocation, and that these modifications acted in species-specific ways. However, drought effects on plant-soil feedbacks were subtle, and did not affect overall plant performance. Therefore, plant-soil feedback effects on plant performance during a drought event may be limited in comparison with the direct effects of drought.


Oecologia ◽  
2016 ◽  
Vol 183 (1) ◽  
pp. 211-220 ◽  
Author(s):  
Kerri M. Crawford ◽  
Tiffany M. Knight

2021 ◽  
Vol 20 (5) ◽  
pp. 1327-1335
Author(s):  
Yuan-yuan SUN ◽  
Qiu-xin ZHANG ◽  
Yun-peng ZHAO ◽  
Yue-hui DIAO ◽  
Fu-rong GUI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document