scholarly journals Phylogeny of the supertribe Nebriitae (Coleoptera, Carabidae) based on analyses of DNA sequence data

ZooKeys ◽  
2021 ◽  
Vol 1044 ◽  
pp. 41-152
Author(s):  
David H. Kavanaugh ◽  
David R. Maddison ◽  
W. Brian Simison ◽  
Sean D. Schoville ◽  
Joachim Schmidt ◽  
...  

The phylogeny of the carabid beetle supertribe Nebriitae is inferred from analyses of DNA sequence data from eight gene fragments including one nuclear ribosomal gene (28S), four nuclear-protein coding genes (CAD, topoisomerase 1, PEPCK, and wingless), and three mitochondrial gene fragments (16S + tRNA-Leu + ND1, COI (“barcode” region) and COI (“Pat/Jer” region)). Our taxon sample included 264 exemplars representing 241 species and subspecies (25% of the known nebriite fauna), 39 of 41 currently accepted genera and subgenera (all except Notiokasis and Archileistobrius), and eight outgroup taxa. Separate maximum likelihood (ML) analyses of individual genes, combined ML analyses of nuclear, nuclear protein-coding, and mitochondrial genes, and combined ML and Bayesian analyses of the eight-gene-fragment matrix resulted in a well-resolved phylogeny of the supertribe, with most nodes in the tree strongly supported. Within Nebriitae, 167 internal nodes of the tree (out of the maximum possible 255) are supported by maximum-likelihood bootstrap values of 90% or more. The tribes Notiophilini, Opisthiini, Pelophilini, and Nebriini are well supported as monophyletic but relationships among these are not well resolved. Nippononebria is a distinct genus more closely related to Leistus than Nebria. Archastes, Oreonebria, Spelaeonebria, and Eurynebria, previously treated as distinct genera by some authors, are all nested within a monophyletic genus Nebria. Within Nebria, four major clades are recognized: (1) the Oreonebria Series, including eight subgenera arrayed in two subgeneric complexes (the Eonebria and Oreonebria Complexes); (2) the Nebriola Series, including only subgenus Nebriola; (3) the Nebria Series, including ten subgenera arrayed in two subgeneric complexes, the Boreonebria and Nebria Complexes, with the latter further subdivided into three subgeneric subcomplexes (the Nebria, Epinebriola, and Eunebria Subcomplexes)); and (4) the Catonebria Series, including seven subgenera arrayed in two subgeneric complexes (the Reductonebria and Catonebria Complexes). A strong concordance of biogeography with the inferred phylogeny is noted and some evident vicariance patterns are highlighted. A revised classification, mainly within the Nebriini, is proposed to reflect the inferred phylogeny. Three genus-group taxa (Nippononebria, Vancouveria and Archastes) are given revised status and seven are recognized as new synonymies (Nebriorites Jeannel, 1941 and Marggia Huber, 2014 = Oreonebria Daniel, 1903; Pseudonebriola Ledoux & Roux, 1989 = Boreonebria Jeannel, 1937; Patrobonebria Bänninger, 1923, Paranebria Jeannel, 1937 and Barbonebriola Huber & Schmidt, 2017 = Epinebriola Daniel & Daniel, 1904; and Asionebria Shilenkov, 1982 = Psilonebria Andrewes, 1923). Six new subgenera are proposed and described for newly recognized clades: Parepinebriola Kavanaugh subgen. nov. (type species: Nebria delicata Huber & Schmidt, 2017), Insulanebria Kavanaugh subgen. nov. (type species: Nebria carbonaria Eschscholtz, 1829), Erwinebria Kavanaugh subgen. nov. (type species Nebria sahlbergii Fischer von Waldheim, 1828), Nivalonebria Kavanaugh subgen. nov. (type species: Nebria paradisi Darlington, 1931), Neaptenonebria Kavanaugh subgen. nov. (type species: Nebria ovipennis LeConte, 1878), and Palaptenonebria Kavanaugh subgen. nov. (type species: Nebria mellyi Gebler, 1847). Future efforts to better understand relationships within the supertribe should aim to expand the taxon sampling of DNA sequence data, particularly within subgenera Leistus and Evanoleistus of genus Leistus and the Nebria Complex of genus Nebria.

2020 ◽  
Vol 6 (1) ◽  
pp. 1-24
Author(s):  
M. Hernández-Restrepo ◽  
A. Giraldo ◽  
R. van Doorn ◽  
M.J. Wingfield ◽  
J.Z. Groenewald ◽  
...  

The Genera of Fungi series, of which this is the sixth contribution, links type species of fungal genera to their morphology and DNA sequence data. Five genera of microfungi are treated in this study, with new species introduced in Arthrographis, Melnikomyces, and Verruconis. The genus Thysanorea is emended and two new species and nine combinations are proposed. Kramasamuha sibika, the type species of the genus, is provided with DNA sequence data for first time and shown to be a member of Helminthosphaeriaceae (Sordariomycetes). Aureoconidiella is introduced as a new genus representing a new lineage in the Dothideomycetes.


Zootaxa ◽  
2012 ◽  
Vol 3350 (1) ◽  
pp. 1 ◽  
Author(s):  
BARRY J. RICHARDSON ◽  
NICOLE L. GUNTER

The genus Servaea Simon 1887 is revised and redefined. Descriptions and identification keys are provided to the following sixspecies, of which three are described as new: Servaea incana (Karsch 1878), Servaea narraweena n. sp., Servaea melaina n.sp., Servaea spinibarbis Simon 1909, Servaea villosa (Keyserling 1881) and Servaea zabkai n. sp. The type species of thegenus, Servaea vestita (L. Koch 1879), is proposed here to be a junior synonym of Servaea incana. In addition to the diagnosesand descriptions, distributional and nucleotide sequence information are provided. DNA sequence data for the segment of COIused in other salticid studies was obtained for the five species for which suitable material was available. Intraspecific variationin S. villosa and S. incana were studied in more detail. Within-species divergence was S. melaina and S spinibarbis, had adjacent predicted distributions, one coastal on sandy soils and one inland on other soil types.


2020 ◽  
Vol 5 (1) ◽  
pp. 77-98 ◽  
Author(s):  
P.W. Crous ◽  
R.K. Schumacher ◽  
A.R. Wood ◽  
J.Z. Groenewald

The present paper represents the fifth contribution in the Genera of Fungi series, linking type species of fungal genera to their morphology and DNA sequence data. This paper focuses on 11 genera of microfungi, for seven of which the type species are neo- or epitypified here: Arthrinium (Arthrinium caricicola; Apiosporaceae, Xylariales, Sordariomycetes), Ceratosphaeria (Ceratosphaeria lampadophora; Magnaporthaceae, Magnaporthales, Sordariomycetes), Dimerosporiopsis (Dimerosporiopsis engleriana; Venturiaceae, Venturiales, Dothideomycetes), Hormodochis (Hormodochis melanochlora; Stictidaceae, Ostropales, Ostropomycetidae, OSLEUM clade, Lecanoromycetes), Lecanostictopsis (Lecanostictopsis kamatii; Mycosphaerellaceae, Capnodiales, Dothideomycetes), Lembosina (Lembosina aulographoides; Lembosinaceae fam. nov., Lembosinales ord. nov., Dothideomycetes), Neomelanconium (Neomelanconium gelatosporum; Cenangiaceae, Helotiales, Leotiomycetes), Phragmotrichum (Phragmotrichum chailletii; Melanommataceae, Pleosporales, Pleosporomycetidae, Dothideomycetes), Pseudomelanconium gen. nov. (Pseudomelanconium spartii; incertae sedis, Pezizomycotina), Rutola (Rutola graminis; Torulaceae, Pleosporales, Pleosporomycetidae, Dothideomycetes), and Trullula (Trullula oreoselini; incertae sedis, Pezizomycotina).


Phytotaxa ◽  
2019 ◽  
Vol 406 (2) ◽  
pp. 111-128 ◽  
Author(s):  
DANUSHKA S. TENNAKOON ◽  
RAJESH JEEWON ◽  
ELENI GENTEKAKI ◽  
CHANG-HSIN KUO ◽  
KEVIN D. HYDE

Phaeosphaeria ampeli is a new species collected from dead leaves of Ficus ampelas in Fanlu Township area, Dahu forest, Chiayi, Taiwan. Phaeosphaeria musae is a new record from dead leaves of Roystonea regia. Both species are described, illustrated and compared with similar species. Phaeosphaeria ampeli is distinguished from other Phaeosphaeria species based on distinct size differences of the ascomata, asci, ascospores and analyses of DNA sequence data. Maximum parsimony, maximum likelihood and Bayesian inference analyses of combined ITS, LSU, SSU and tef1-α sequence data are used to clarify the phylogenetic affinities of the species.


Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Esther Betrán ◽  
Julio Rozas ◽  
Arcadio Navarro ◽  
Antonio Barbadilla

DNA sequence variation studies report the transfer of small segments of DNA among different sequences caused by gene conversion events. Here, we provide an algorithm to detect gene conversion tracts and a statistical model to estimate the number and the length distribution of conversion tracts for population DNA sequence data. Two length distributions are defined in the model: (1) that of the observed tract lengths and (2) that of the true tract lengths. If the latter follows a geometric distribution, the relationship between both distributions depends on two basic parameters: ψ, which measures the probability of detecting a converted site, and φ the parameter of the geometric distribution, from which the average true tract length, 1 / (1 – φ), can be estimated. Expressions are provided for estimating φ by the method of the moments and that of the maximum likelihood. The robustness of the model is examined by computer simulation. The present methods have been applied to the published rp49 sequences of Drosophila subobscura. Maximum likelihood estimate of φ for this data set is 0.9918, which represents an average conversion tract length of 122 bp. Only a small percentage of extant conversion events is detected.


1993 ◽  
Vol 21 (12) ◽  
pp. 2837-2844 ◽  
Author(s):  
James W. Fickett ◽  
Roderic Guigó

Sign in / Sign up

Export Citation Format

Share Document