scholarly journals Phylogenetic analysis of the myrmecophilous Cremastocheilus Knoch (Coleoptera, Scarabaeidae, Cetoniinae), based on external adult morphology. Appendix B: Morphological character matrix of analyzed species of Cremastocheilus, with states used for each character

ZooKeys ◽  
2010 ◽  
Vol 34 (0) ◽  
Author(s):  
Glené Mynhardt ◽  
John Warren Wenzel
Zootaxa ◽  
2008 ◽  
Vol 1736 (1) ◽  
pp. 1 ◽  
Author(s):  
CATHERINE J. YOUNG

The Australian Nacophorini and related taxa are described using a matrix of 116 adult morphological characters. Adults of 72 species are illustrated using photographs and electron micrographs. Subsets of the characters are used to conduct a phylogenetic analysis based on cladistic principles. The adult morphological character set was augmented with 17 characters from eggs and 27 from larvae. The resulting phylogeny is poorly resolved but provides support for many of the relationships recovered by previous molecular analyses of the group, including basal derivations for characters of Larentiinae and Sterrhinae relative to those of the rest of Geometridae, and the monophyly of the Geometrinae + Oenochrominae s. str. Combining 28S D2 datawith morphological data produced a matrix of 60 taxa and 590 characters. The majority rule consensus tree produced by the combined morphological and 28S D2 data is almost identical to the majority rule consensus tree produced by the 28S D2 data alone, except that bootstrap support is lower for most nodes. Common clades obtained from the molecular and morphological trees are described in terms of morphological data. On this basis a concept of the Australian Nacophorini includes Lithinini and Australian Archiearinae. Two robust groups within the tribe also are delimited using characters from all data sources. Comparsions are made between the Nearctic and Neotropical Nacophorini on the basis of shared morphological characters. Australian Boarmiini are defined by synapomorphies.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1583 ◽  
Author(s):  
William G. Parker

Aetosauria is an early-diverging clade of pseudosuchians (crocodile-line archosaurs) that had a global distribution and high species diversity as a key component of various Late Triassic terrestrial faunas. It is one of only two Late Triassic clades of large herbivorous archosaurs, and thus served a critical ecological role. Nonetheless, aetosaur phylogenetic relationships are still poorly understood, owing to an overreliance on osteoderm characters, which are often poorly constructed and suspected to be highly homoplastic. A new phylogenetic analysis of the Aetosauria, comprising 27 taxa and 83 characters, includes more than 40 new characters that focus on better sampling the cranial and endoskeletal regions, and represents the most comprenhensive phylogeny of the clade to date. Parsimony analysis recovered three most parsimonious trees; the strict consensus of these trees finds an Aetosauria that is divided into two main clades: Desmatosuchia, which includes the Desmatosuchinae and the Stagonolepidinae, and Aetosaurinae, which includes the Typothoracinae. As defined Desmatosuchinae now containsNeoaetosauroides engaeusand several taxa that were previously referred to the genusStagonolepis, and a new clade, Desmatosuchini, is erected for taxa more closely related toDesmatosuchus. Overall support for some clades is still weak, and Partitioned Bremer Support (PBS) is applied for the first time to a strictly morphological dataset demonstrating that this weak support is in part because of conflict in the phylogenetic signals of cranial versus postcranial characters. PBS helps identify homoplasy among characters from various body regions, presumably the result of convergent evolution within discrete anatomical modules. It is likely that at least some of this character conflict results from different body regions evolving at different rates, which may have been under different selective pressures.


2017 ◽  
Vol 79 (7) ◽  
pp. 544-551
Author(s):  
Ronald Allan L. Cruz

Dragons are a staple of fantasy literature, and various aspects of the creatures (most notably their anatomy) have been explored scientifically across different forms of media. Their distinct anatomical characteristics and the variations therein among the recognized “species” of dragons make the taxa appropriate models for basic phylogenetic analysis in an undergraduate general biology or systematics class. The wyvern, an obviously more primitive, distant cousin of the “true” dragons, is also an appropriate outgroup for these estimations of shared evolutionary history. Separating metallic from chromatic dragons, the generated tree shows relationships among the species that are consistent with their separation in the Dungeons & Dragons games according to alignment, scale color, and religion, three characters that are not used in the analysis. Manual construction of a character matrix and cladogram of dragons followed by repetition of this process via conventional computer software allows the students to track their progress not only in terms of understanding such concepts as choice of character states and parsimony but also in terms of the applicability of said software.


2020 ◽  
pp. 1-11
Author(s):  
Steven Byrum ◽  
Bruce S. Lieberman

Abstract Members of the echinoid order Spatangoida, a highly diverse and abundant marine invertebrate clade, were important denizens of the Cretaceous Western Interior Seaway (WIS), an epicontinental seaway that divided North America in two during an interval of greenhouse conditions between roughly 100 and 65 million years ago. A phylogenetic analysis of spatangoids was conducted using a character matrix of 32 characters from 21 species. Species that occur in the WIS were considered comprehensively, and species from other regions such as South America, Europe, and North Africa were also incorporated into the analysis. Phylogenetic patterns retrieved are largely congruent with preexisting family-level classifications; however, species within several genera, especially Hemiaster and Heteraster, need to be reassigned so that classification better reflects phylogeny. The genera Washitaster and Heteraster are closely related, as are Mecaster, Palhemiaster, and Proraster; Pliotoxaster, Macraster, and Hemiaster; and Micraster and Diplodetus. Biogeographic patterns were also considered using the phylogeny, and several episodes of vicariance and range expansion were identified. These were possibly related to some of the various major episodes of sea-level rise and fall during the Cretaceous. In particular, Valangian–mid-Aptian regressions may have caused vicariance within Heteraster and Washitaster while other early spatangoid vicariance may be related to regressions during the late Aptian–early Cenomanian. Further, vicariance caused by regressions during the mid-Cenomanian–Maastrichtian may have driven diversification within Micraster and Diplodetus. Last, transgressions during the late Aptian–early Cenomanian seem to have spurred prominent range expansions in Mecaster and Hemiaster.


Zootaxa ◽  
2011 ◽  
Vol 3103 (1) ◽  
pp. 1
Author(s):  
ROBERT J. VAN SYOC ◽  
ALLEN M. DEKELBOUM

A phylogenetic analysis of the Cirripedia family Oxynaspididae yields four monophyletic clades. These are designated as four genera, Oxynaspis Darwin, 1852, Archoxynaspis gen. nov., Pycnaspis gen. nov. and Minyaspis gen. nov. Five new species from Astrolabe Reef in Fiji (Oxynaspis perekrestenkoi sp. nov., O. joankovanae sp. nov., Minyaspis amylaneae sp. nov., M. opreskoi sp. nov. and M. welchi sp. nov.) and one from Palau (Oxynaspis joandianae sp. nov.) are described. A morphological character dataset and resulting phylogeny supporting the new generic divisions is presented. All but two of the 24 species previously known and all six of the newly described species are intimately associated with antipatharians. Pycnaspis connectens was described by Broch (1931) as “fixed to a silicious sponge.” A list of species’ ranges and their known hosts is presented. The earliest known possible antipatharian in the fossil record is Miocene, much later than the Eocene appearance of Archoxynaspis eocenica (Withers, 1935). Therefore, the symbiosis of oxynaspidids with antipatharians may have evolved only since the Miocene. However, given the dubious fossil record of antipatharians (known only from a single specimen of uncertain affinity from Miocene Italy) the time of the first antipatharian/oxynaspidid symbiosis is uncertain.


Sign in / Sign up

Export Citation Format

Share Document