scholarly journals The complete mitogenome of Helix pomatia and the basal phylogeny of Helicinae (Gastropoda, Stylommatophora, Helicidae)

ZooKeys ◽  
2019 ◽  
Vol 827 ◽  
pp. 19-30 ◽  
Author(s):  
Ondřej Korábek ◽  
Adam Petrusek ◽  
Michail Rovatsos

A complete mitochondrial genome of the Roman snail Helixpomatia Linnaeus, 1758 has been sequenced. The length and gene order correspond to that of other available helicid mitogenomes. We used the mitogenome sequence to reappraise the relationships among the four presumed principal groups of the helicid subfamily Helicinae. The results support the idea that the subfamily is divided between two western Palaearctic diversification centres: Iberian Peninsula and western Maghreb in the west, and Anatolia, the Aegean and Caucasus in the east. One group, the tribe Helicini, diversified in the east and the remaining three currently recognised tribes in the west. However, the exact relationships among lineages of the non-Helicini tribes could not be resolved.

ZooKeys ◽  
2018 ◽  
Vol 793 ◽  
pp. 1-14
Author(s):  
Wentao Niu ◽  
Shuangen Yu ◽  
Peng Tian ◽  
Jiaguang Xiao

Lack of mitochondrial genome data of Scleractinia is hampering progress across genetic, systematic, phylogenetic, and evolutionary studies concerning this taxon. Therefore, in this study, the complete mitogenome sequence of the stony coralEchinophylliaaspera(Ellis & Solander, 1786), has been decoded for the first time by next generation sequencing and genome assembly. The assembled mitogenome is 17,697 bp in length, containing 13 protein coding genes (PCGs), two transfer RNAs and two ribosomal RNAs. It has the same gene content and gene arrangement as in other Scleractinia. All genes are encoded on the same strand. Most of the PCGs use ATG as the start codon except for ND2, which uses ATT as the start codon. The A+T content of the mitochondrial genome is 65.92% (25.35% A, 40.57% T, 20.65% G, and 13.43% for C). Bayesian and maximum likelihood phylogenetic analysis have been performed using PCGs, and the result shows thatE.asperaclustered closely withSclerophylliamaxima(Sheppard & Salm, 1988), both of which belong to Lobophylliidae, when compared with species belonging to Merulinidae and other scleractinian taxa used as outgroups. The complete mitogenome ofE.asperaprovides essential and important DNA molecular data for further phylogenetic and evolutionary analyses of corals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying-ying Ye ◽  
Jing Miao ◽  
Ya-hong Guo ◽  
Li Gong ◽  
Li-hua Jiang ◽  
...  

AbstractThe complete mitochondrial genome (mitogenome) of animals can provide useful information for evolutionary and phylogenetic analyses. The mitogenome of the genus Exhippolysmata (i.e., Exhippolysmata ensirostris) was sequenced and annotated for the first time, its phylogenetic relationship with selected members from the infraorder Caridea was investigated. The 16,350 bp mitogenome contains the entire set of 37 common genes. The mitogenome composition was highly A + T biased at 64.43% with positive AT skew (0.009) and negative GC skew (− 0.199). All tRNA genes in the E. ensirostris mitogenome had a typical cloverleaf secondary structure, except for trnS1 (AGN), which appeared to lack the dihydrouridine arm. The gene order in the E. ensirostris mitogenome was rearranged compared with those of ancestral decapod taxa, the gene order of trnL2-cox2 changed to cox2-trnL2. The tandem duplication-random loss model is the most likely mechanism for the observed gene rearrangement of E. ensirostris. The ML and BI phylogenetic analyses place all Caridea species into one group with strong bootstrap support. The family Lysmatidae is most closely related to Alpheidae and Palaemonidae. These results will help to better understand the gene rearrangements and evolutionary position of E. ensirostris and lay a foundation for further phylogenetic studies of Caridea.


2016 ◽  
Vol 27 (6) ◽  
pp. 4261-4263
Author(s):  
Tianxing Liu ◽  
Hongxia Ma ◽  
Tao Wei ◽  
Yunhang Gao ◽  
Tianjun Xu

Author(s):  
Tianhong Wang ◽  
Zihao Wang ◽  
Ruwei Bai ◽  
Zhijun Yu ◽  
Jingze Liu

Haemaphysalis qinghaiensis is an endemic species and mainly inhabiting in the northwestern plateau of China, which can transmit many zoonotic pathogens and cause great harm to animals. In this study, the complete mitochondrial genome (mitogenome) of H. qinghaiensis was assembled through the Illumina HiSeq platform. The mitogenome was 14,533 bp in length, consisting of 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and 3 noncoding regions (NCRs). The bias towards a high A+T content with 77.65% in mitogenome of H. qinghaiensis. The rearrangement of mitochondrial genes in H. qinghaiensis was consistent with other hard ticks. The phylogenetic analysis based on the concatenation of 13 PCGs from 65 tick mitogenomes showed that the H. qinghaiensis was clustered into a well-supported clade within the Haemaphysalis genus. This is the first complete mitogenome sequence of H. qinghaiensis, which provides a useful reference for understanding of the taxonomic and genetics of ticks.


Sign in / Sign up

Export Citation Format

Share Document