Theoretical investigation on state of load distribution among contact bearings of double circular arc helical gears

2000 ◽  
Vol 13 (02) ◽  
pp. 108 ◽  
Author(s):  
Baolin Wu
1985 ◽  
Vol 107 (4) ◽  
pp. 556-564 ◽  
Author(s):  
F. L. Litvin ◽  
Chung-Biau Tsay

Methods proposed in this paper cover: (a) generation of conjugate gear tooth surfaces with localized bearing contact; (b) derivation of equations of gear tooth surfaces; (c) simulation of conditions of meshing and bearing contact; (d) investigation of the sensitivity of gears to the errors of manufacturing and assembly (to the change of center distance and misalignment); and (e) improvement of bearing contact with the corrections of tool settings. Using this technological method we may compensate for the dislocation of the bearing contact induced by errors of manufacturing and assembly. The application of the proposed methods is illustrated by numerical examples. The derivation of the equations is given in the Appendix.


1989 ◽  
Vol 111 (4) ◽  
pp. 611-615 ◽  
Author(s):  
V. Simon

A method for the simultaneous calculation of optimal tooth tip relief and tooth crowning for spur and helical gears is presented in this paper. The tooth profile modification is described by a linear function. Two types of crowning are introduced: linear and parabolic. The optimization of the tooth modifications is based on the following conditions: (1) The teeth are entering in mesh smoothly, without interference. (2) The load distribution factor is minimized. A computer program is developed for the calculation of the optimal tooth tip relief and crowning for spur and helical gears. By using this program the influence of type and length of optimal crowning and length of tooth tip relief on load distribution factor is investigated. Also, the influence of gear parameters on optimal tooth profile modification is discussed. On the basis of the obtained results, by regression analysis an equation is derived for the calculation of the optimal tooth tip relief.


Author(s):  
Bernd-Robert Ho¨hn ◽  
Peter Oster ◽  
Gregor Steinberger

In experimental analyzes the pitting load capacity of case carburized spur and helical gears is determined in back-to-back test rigs. The research program with one type of spur and 8 types of helical gears includes tests for the determination of influences of varying load distribution, overlap ratio and transmission ratio. The test results are presented and evaluated on the basis of the pitting load capacity calculation methods of ISO 6336-2/DIN 3990, part 2. A new DIN/ISO compatible calculation method for pitting load capacity is presented. This new calculation method comprehends helical gears more adequate than ISO 6336-2 / DIN 3990, part 2 and has the possibility to consider tooth flank modifications. The new calculation method is applied on test results and gears of a calculation study. It shows better accordance with the experimental test results than the present ISO 6336-2 / DIN 3990, part 2.


Author(s):  
Pin-Hao Feng ◽  
Faydor L. Litvin ◽  
Dennis P. Townsend ◽  
Robert F. Handschuh

Abstract Helical gears with localized bearing contact of tooth surfaces achieved by profile crowning of tooth surfaces are considered. Profile crowning is analyzed through the use of two imaginary rack-cutters with mismatched surfaces. The goal is to determine the dimensions and orientation of the instantaneous contact ellipse from the principle curvatures of the pinion and gear tooth surfaces. A simplified solution to this problem is proposed based on the approach developed for correlation of principal curvatures and directions of generating and generated tooth surfaces. The equations obtained are applied to three cases of profile crowning where the normal profiles of the rack-cutters are: (i) parabolic curves: (ii) circular arcs; and (iii) a combination of a straight line for one of the rack-cutters and a parabolic curve or a circular arc for the mating rack-cutter. The gear drives can be the combination of a pinion generated by a parabolic curve or a circular arc and gear generated by one of three cases mentioned above.


Sign in / Sign up

Export Citation Format

Share Document