scholarly journals Load Distribution in Marine Reduction Gears : (2nd Report, Double Helical Gears)

1961 ◽  
Vol 27 (178) ◽  
pp. 899-909
Author(s):  
Kunikazu HAYASHI ◽  
Takehide SAYAMA
1989 ◽  
Vol 111 (4) ◽  
pp. 611-615 ◽  
Author(s):  
V. Simon

A method for the simultaneous calculation of optimal tooth tip relief and tooth crowning for spur and helical gears is presented in this paper. The tooth profile modification is described by a linear function. Two types of crowning are introduced: linear and parabolic. The optimization of the tooth modifications is based on the following conditions: (1) The teeth are entering in mesh smoothly, without interference. (2) The load distribution factor is minimized. A computer program is developed for the calculation of the optimal tooth tip relief and crowning for spur and helical gears. By using this program the influence of type and length of optimal crowning and length of tooth tip relief on load distribution factor is investigated. Also, the influence of gear parameters on optimal tooth profile modification is discussed. On the basis of the obtained results, by regression analysis an equation is derived for the calculation of the optimal tooth tip relief.


Author(s):  
Bernd-Robert Ho¨hn ◽  
Peter Oster ◽  
Gregor Steinberger

In experimental analyzes the pitting load capacity of case carburized spur and helical gears is determined in back-to-back test rigs. The research program with one type of spur and 8 types of helical gears includes tests for the determination of influences of varying load distribution, overlap ratio and transmission ratio. The test results are presented and evaluated on the basis of the pitting load capacity calculation methods of ISO 6336-2/DIN 3990, part 2. A new DIN/ISO compatible calculation method for pitting load capacity is presented. This new calculation method comprehends helical gears more adequate than ISO 6336-2 / DIN 3990, part 2 and has the possibility to consider tooth flank modifications. The new calculation method is applied on test results and gears of a calculation study. It shows better accordance with the experimental test results than the present ISO 6336-2 / DIN 3990, part 2.


2018 ◽  
Vol 121 ◽  
pp. 151-168 ◽  
Author(s):  
Yanjun Peng ◽  
Ning Zhao ◽  
Pengyuan Qiu ◽  
Mengqi Zhang ◽  
Wang Li ◽  
...  

Author(s):  
Yu Tonghui ◽  
Chen Chenwen ◽  
Wang Liqin

Abstract On the base of analysis of the effects of each term in Renolds equaiton on the lubrication state of helical gears, the three dimensional elastohydrodynamic lubrication (EHL) problem is discomposed into two dimensional problems to deal with. A special boundary condition for helical gear EHL problem is led in and applying multigrid method (MGM), numerical solutions for the helical gear EHL problem are accomplished along the contact line. Film shapes and pressure ditributions with typical EHL features are obtained at discreted points on the contact line. The procedure presented here to calculate the load distribution on the contact line can also be used to calculate the load shares among different contact lines.


Author(s):  
Isaias Regalado ◽  
Donald R. Houser

Abstract The theoretical advantage of conjugate action in involute gears is lost due to the deflection of the teeth under load and due to manufacturing and assembling errors. These factors produce instantaneous variations in the gear ratio commonly referred to as transmission error. The transmission error has been proven to have a strong relationship with the noise emitted by the transmission. In order to reduce the transmission error, the contacting surfaces of the gears are modified to compensate for the deflections and errors. These modifications may be performed in the direction of the profile, the lead or in a more general sense it may be topographical (defined point by point). This paper describes a non-iterative procedure for the calculation of the modifications for minimum transmission error based on a predefined load distribution. The results presented agree with the common practice for spur gears of tip relief in the direction of the profile and crowning in the direction of the lead, but for helical gears the need for a more complicated modification is observed.


Sign in / Sign up

Export Citation Format

Share Document