Parameters optimization of continuous wavelet transform and its application in acoustic emission signal analysis of rolling bearing

2007 ◽  
Vol 20 (02) ◽  
pp. 104 ◽  
Author(s):  
Xinming ZHANG
2009 ◽  
Vol 413-414 ◽  
pp. 651-657 ◽  
Author(s):  
Ru Jiang Hao ◽  
Zhi Peng Feng ◽  
Fu Lei Chu

The acoustic emission signals of rolling bearing with different type of defects are de-noised and illustrated by the continuous wavelet transform and scalogram. Morlet wavelet function is selected and the wavelet parameters are optimized based on the principle of minimal wavelet entropy. The soft-threshold de-noising is used to filter the wavelet transform coefficients. The de-noised signals obtained by reconstructing the wavelet coefficients show the obvious impulsive features. Based on the optimized waveform parameters, the wavelet scalogram is used to analyze the real AE signal from the defective rolling bearing in experimental test rig. The results indicate that the proposed method is useful and efficient for signal purification and features extraction.


2006 ◽  
Vol 321-323 ◽  
pp. 71-76 ◽  
Author(s):  
Hideo Cho ◽  
Takashi Naruse ◽  
Takuma Matsuo ◽  
Mikio Takemoto

A novel optical fiber acoustic emission (AE) system with multi-sensing function in single long fiber was developed and utilized for the estimation of AE sources of model steel plate and jointed pipes. Multi-sensing function was achieved by dividing the single sensing fiber into several sensor portions with different resonance frequencies. The resonance frequencies were provided by winding the sensing fiber around the solid rods (sensor holders) with different diameters. The monitoring system with three sensors in a 10 m long fiber was demonstrated to detect three wave packets with different frequencies and correctly estimate the source locations of AEs from artificial (Nelson-Sue) sources on a 0.9 wide x 1.8 m long steel plate. Here the arrival times of AEs for the source location were determined by the continuous wavelet transform. Source locations on the steel plate were determined within a distance error of 53 mm. The system also makes the location of the pipe with damage possible.


Author(s):  
Hoi Yin Sim ◽  
Rahizar Ramli ◽  
Ahmad Saifizul

Acoustic emission technique is often employed to detect valve abnormalities. With the development of technology, machine learning-based fault diagnosis methods are prevalent in the nondestructive testing industry as they can automatically detect valve problems without any human intervention. Nevertheless, feeding in all possible input parameters into the learning algorithm without any prior assessment may result in high computational cost and time, while adding to the risk of having false alarms. This study intended to obtain characteristics of acoustic emission signal for various valve conditions and compressor speeds by examining the four most commonly used parameters, namely the acoustic emission root mean square, acoustic emission crest factor, acoustic emission variance, and acoustic emission kurtosis. The study begins with time–frequency analysis of one revolution acoustic emission signal acquired from a faulty suction valve through discrete wavelet transform to obtain the signal characteristics of valve events. To associate signals with valve movements, the reconstructed discrete wavelet transform signals are further segregated into six time segments, and the four acoustic emission parameters are computed from each of the time segments. These parameters are analyzed through statistical analysis namely the two-way analysis of variance, followed by the Tukey test to obtain the best parameter which can differentiate each valve condition clearly at all speeds. The results revealed that acoustic emission root mean square is the best parameter especially in identification of heavy grease valve condition during suction valve opening event while acoustic emission crest factor is capable to detect leaky valve during the suction valve closing event at all speeds. It is believed that effective valve diagnosis strategy can be delivered by referring to the features of parameters and the characteristic valve event timing corresponding to each valve condition and speed.


Sign in / Sign up

Export Citation Format

Share Document