STUDY ON EFFECTS OF DROPLET TRANSFER ON OPERATION PERFORMANCE OF SELF-SHIELDED FLUX-CORED WIRE

2000 ◽  
Vol 36 (05) ◽  
pp. 66 ◽  
Author(s):  
Zhuoxin Li
Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1715 ◽  
Author(s):  
Ning Guo ◽  
Lu Huang ◽  
Yongpeng Du ◽  
Qi Cheng ◽  
Yunlong Fu ◽  
...  

Underwater wet welding technology is widely used. Because the stability of droplet transfer in underwater wet welding is poor, the feasibility of improving the droplet transfer mode has been discussed from various technical directions. In this work, the characteristics of pulsating wire feeding were studied in the pulsating wire feeding mode by investigating the effects of changing the pulsating frequency, the wire withdrawal speed, and the wire withdrawal quantity on the droplet transfer process and the welding quality. With the aim of improving weld forming and welding stability, the authors selected the coefficient of variation and the ratio of unstable droplet transfer as the indexes to evaluate the effect of droplet transfer control. The pulsating wire feeding process of underwater wet flux-cored wire was analyzed in depth, and the following conclusions were drawn: using the pulsating wire feeding mode and after comparing and analyzing the pulsed wire feeding process under the same frequency condition, the authors found that the forming and stability were better under the conditions of slower withdrawal speed and smaller withdrawal quantity. The short-circuit transition ratio decreased steadily with the increase of pulsating wire feeding frequency, the rejection transition ratio first rose and then decreased, and the splash ratio first decreased and then rose.


2013 ◽  
Vol 477-478 ◽  
pp. 1369-1372 ◽  
Author(s):  
Yong Wang ◽  
Ying Qiao Zhang ◽  
Bao Wang ◽  
Zhi Jun Wang

The metal transfer behaviors of basic flux cored wire at different arc voltage and welding current and the resultant welding spatter were investigated by using a high speed camera. Two modes of metal transfer are found: globular repelled transfer (lower welding parameters) and small droplet transfer (higher welding parameters). The former is accompanied by large granular spatter, large droplet itself explosion spatter and electric explosive spatter of short-circuit, and spatter in the latter is reduced obviously. But if the slag column is found in the two models, spatter could be dropped evidently owing to its significant guiding role for metal transfer. Therefore the slag column is the key factor of reducing welding spatter.


2017 ◽  
Vol 24 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Lijun Yang ◽  
Tianxi He ◽  
Ying Liu ◽  
Yonglei Zhai ◽  
Huan Li

2020 ◽  
Vol 985 ◽  
pp. 229-239
Author(s):  
Dong Ting Wu ◽  
Yong Zou ◽  
Guan Lin Zhao ◽  
Chuan Wei Shi

Twin-wire indirect arc welding (TWIAW) is a novel welding technology with high deposition efficiency and low dilution rate, which is especially suitable for wear-resistant surfacing. In this study, wear-resistant surfacing layer was prepareted on low-carbon steel using flux cored wire by TWIAW. The influence of welding parameters on droplet transition and the surfacing layers property were studied. In the TWIAW process, due to rapidly solidification of the weld pool, wear-resistant reinforced phase synthesized through metallurgical reaction mainly finished in the droplet transfer stage using the welding arc. The welding parameters not only affected the droplet transfer frequency and size, but also affected the microstructure of the surfacing layer. The main reinforcing phase in the surfacing layer was chromium carbide. "Lean carbon" phenomenon could be observed along the grain boundary in the matrix when the welding current was small. The increasing of the welding current could prompt the metallurgical reaction. The wear resistance of the surfacing layers depends on the distribution of the chromium carbide and the matrix microstructure.


2018 ◽  
Vol 51 (7-8) ◽  
pp. 349-359 ◽  
Author(s):  
Dapeng Zhang ◽  
Zhiwei Gao

Background: Processes and systems are always subjected to faults or malfunctions due to age or unexpected events, which would degrade the operation performance and even lead to operation failure. Therefore, it is motivated to develop fault-tolerant control strategy so that the system can operate with tolerated performance degradation. Methods: In this paper, a reinforcement learning -based fault-tolerant control method is proposed without need of the system model and the information of faults. Results and Conclusions: Under the real-time tolerant control, the dynamic system can achieve performance tolerance against unexpected actuator or sensor faults. The effectiveness of the algorithm is demonstrated and validated by the rolling system in a test bed of the flux cored wire.


2020 ◽  
pp. 511-515
Author(s):  
E.N. Eremin ◽  
A.S. Losev ◽  
I.A. Ponomarev ◽  
S.A. Borodikhin

The heat-resistance of coating from deposited steel 15N8G6M3FTB at temperature of 900 °С is studied. It is established that this dependence occurs in the first hours. The average mass gain of the metal scale of such coating at 900 °С is 0.0128 kg/(m2 •h). It is shown that the basis of metal scale of the composition 15N8G6M3FTB is hematite Fe2O3 and magnetite Fe3O4, as well as MnO, which have protective properties. The number of other phase compounds with high protective properties is negligible. The coating from steel 15N8G6M3FTB can be used for applying to the surface of parts operating at elevated temperatures.


Sign in / Sign up

Export Citation Format

Share Document