Multi-objective Optimization and Performance Research of Magneto-rheological Absorber under High Speed

2014 ◽  
Vol 50 (5) ◽  
pp. 127
Author(s):  
Xiaomin DONG
2021 ◽  
Author(s):  
Aakriti Tarun Sharma

The process of converting a behavioral specification of an application to its equivalent system architecture is referred to as High Level-Synthesis (HLS). A crucial stage in embedded systems design involves finding the trade off between resource utilization and performance. An exhaustive search would yield the required results, but would take a huge amount of time to arrive at the solution even for smaller designs. This would result in a high time complexity. We employ the use of Design Space Exploration (DSE) in order to reduce the complexity of the design space and to reach the desired results in less time. In reality, there are multiple constraints defined by the user that need to be satisfied simultaneously. Thus, the nature of the task at hand is referred to as Multi-Objective Optimization. In this thesis, the design process of DSP benchmarks was analyzed based on user defined constraints such as power and execution time. The analyzed outcome was compared with the existing approaches in DSE and an optimal design solution was derived in a shorter time period.


Author(s):  
Huizhuo Cao ◽  
Xuemei Li ◽  
Vikrant Vaze ◽  
Xueyan Li

Multi-objective pricing of high-speed rail (HSR) passenger fares becomes a challenge when the HSR operator needs to deal with multiple conflicting objectives. Although many studies have tackled the challenge of calculating the optimal fares over railway networks, none of them focused on characterizing the trade-offs between multiple objectives under multi-modal competition. We formulate the multi-objective HSR fare optimization problem over a linear network by introducing the epsilon-constraint method within a bi-level programming model and develop an iterative algorithm to solve this model. This is the first HSR pricing study to use an epsilon-constraint methodology. We obtain two single-objective solutions and four multi-objective solutions and compare them on a variety of metrics. We also derive the Pareto frontier between the objectives of profit and passenger welfare to enable the operator to choose the best trade-off. Our results based on computational experiments with Beijing–Shanghai regional network provide several new insights. First, we find that small changes in fares can lead to a significant improvement in passenger welfare with no reduction in profitability under multi-objective optimization. Second, multi-objective optimization solutions show considerable improvements over the single-objective optimization solutions. Third, Pareto frontier enables decision-makers to make more informed decisions about choosing the best trade-offs. Overall, the explicit modeling of multiple objectives leads to better pricing solutions, which have the potential to guide pricing decisions for the HSR operators.


Sign in / Sign up

Export Citation Format

Share Document