Analytical Formulae of Secondary Vertical Suspension System Design for High-speed Train

2016 ◽  
Vol 52 (19) ◽  
pp. 53
Author(s):  
Changcheng ZHOU
2019 ◽  
Vol 68 (12) ◽  
pp. 11746-11761 ◽  
Author(s):  
Guangrong Yue ◽  
Daizhong Yu ◽  
Long Cheng ◽  
Qifu Lv ◽  
Zhigang Luo ◽  
...  

2014 ◽  
Vol 620 ◽  
pp. 511-515
Author(s):  
Han Song Yang ◽  
Peng Li ◽  
Li Zhi Gu ◽  
Hui Juan Guo

It is the main decrease press type used in high speed train of semi suspension system, as the parameter can not be regulated freely of the semi suspension system, to design a kind of damping shock absorber which with the sensitive and soft system are very important, this system which using of the Electro hydraulic proportional valve to regulation the safety valve, the guide valve and the damping force of shock absorber, get the recycle method of the hydraulic system from inner to outside, and also using the suspension active control variable damping shock absorber to detect the road, this device, in fact, by vibration, which let the valve move relation, turn the mechanical energy into hot and release outside, thus decrease the vibration. To design this variable damping shock absorber ,compared with the semi suspension system ,for it has the connect system and Electro hydraulic proportional valve, and with the road detectors, and various variable parameters, Which let the high speed train more stable and safety, overcome the short of parameter regulation for the semi-automatic suspension system.


2020 ◽  
Vol 13 (3) ◽  
pp. 215-222
Author(s):  
Lukman Shalahuddin ◽  
Kartiko E. Putranto ◽  
Dimas B. Eskayudha

This paper describes a study on the development of methodology to select the most appropriate technology, and the most optimum design and configuration for the propulsion system of the semi-high speed intercity train that will be operated on the Jakarta-Surabaya corridor. It also describes the method to calculate resistance loads  and tractive forces and hence the power required to propel the train along the specified route within targeted time. Among the output of this study is a recommendation for the most optimum propulsion system with basic/ main parameters for main components such as diesel engine, traction motor and the possibility of Diesel Electric Multiple Unit (DEMU) Hybrid battery system.


2013 ◽  
Vol 753-755 ◽  
pp. 1795-1799 ◽  
Author(s):  
Xiao Wei Huang ◽  
Yan Ying Zhao

In order to suppress the lateral vibration of high-speed train caused by track irregularity, the delayed feedback control is employed to suppress the vibration of the semi-active suspension system. The 1/4 vehicle mathematical model of semi-active suspension system is established. The amplitude of the bodys lateral vibration is large at some values of external excitation frequency for the passive suspension system, and it could be suppressed at some values of time delay, while the vibration of the bodys lateral vibration may be deteriorated at other values of time delay. The results show that the amplitude of the bodys lateral vibration could be suppressed about 50% when the suitable values of damping coefficient and time delay are chosen by comparing with the passive suspension system. The analytical results of this paper are in good agreement with the numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document