A Low-Cost Lateral Active Suspension System of the High-Speed Train for Ride Quality Based on the Resonant Control Method

2018 ◽  
Vol 65 (5) ◽  
pp. 4187-4196 ◽  
Author(s):  
Qiao Zhu ◽  
Liang Li ◽  
Chun-Jun Chen ◽  
Cong-Zhi Liu ◽  
Guang-Di Hu
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhengchao Xie ◽  
Pak Kin Wong ◽  
Jing Zhao ◽  
Tao Xu ◽  
Ka In Wong ◽  
...  

Semi-active air suspension is increasingly used on heavy-duty vehicles due to its capabilities of consuming less power and low cost and providing better ride quality. In this study, a new low cost but effective approach, fuzzy-wheelbase preview controller with wavelet denoising filter (FPW), is developed for semi-active air suspension system. A semi-active suspension system with a rolling lobe air spring is firstly modeled and a novel front axle vertical acceleration-based road prediction model is constructed. By adopting a sensor on the front axle, the road prediction model can predict more reliable road information for the rear wheel. After filtering useless signal noise, the proposed FPW can generate a noise-insensitive control damping force. Simulation results show that the ride quality, the road holding, the handling capability, the road friendliness, and the comprehensive performance of the semi-active air suspension with FPW outperform those with the traditional active suspension with PID-wheelbase preview controller (APP). It can also be seen that, with the addition of the wavelet filter, the impact of sensor noise on the suspension performance can be minimized.


2013 ◽  
Vol 753-755 ◽  
pp. 1795-1799 ◽  
Author(s):  
Xiao Wei Huang ◽  
Yan Ying Zhao

In order to suppress the lateral vibration of high-speed train caused by track irregularity, the delayed feedback control is employed to suppress the vibration of the semi-active suspension system. The 1/4 vehicle mathematical model of semi-active suspension system is established. The amplitude of the bodys lateral vibration is large at some values of external excitation frequency for the passive suspension system, and it could be suppressed at some values of time delay, while the vibration of the bodys lateral vibration may be deteriorated at other values of time delay. The results show that the amplitude of the bodys lateral vibration could be suppressed about 50% when the suitable values of damping coefficient and time delay are chosen by comparing with the passive suspension system. The analytical results of this paper are in good agreement with the numerical simulation.


1995 ◽  
Vol 7 (4) ◽  
pp. 319-323
Author(s):  
Akihiko Shimura ◽  
◽  
Kazuo Yoshida

In this paper, H∞ control theory and <I>μ</I> synthesis are applied to vibration control of active suspension for high speed train. A linear 58th order model is built for the dynamical analysis of the train model. This model takes into account the body, truck frame, wheel, hydraulic actuator, and property of track irregularity. A hydraulic actuator replaces a lateral damper between body and truck frame of the conventional passive suspension train. The controller for vibration control is synthesized by H∞ control synthesis and improved by <I>μ</I> synthesis. The characteristics and performances of the controllers are examined by performing numerical calculations of frequency response and computational simulations. As a result, it is clarified that the active suspension for highspeed train is effective to improve ride quality and that the present synthesis method is useful.


2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhi-Jun Fu ◽  
Bin Li ◽  
Xiao-Bin Ning ◽  
Wei-Dong Xie

In view of the performance requirements (e.g., ride comfort, road holding, and suspension space limitation) for vehicle suspension systems, this paper proposes an adaptive optimal control method for quarter-car active suspension system by using the approximate dynamic programming approach (ADP). Online optimal control law is obtained by using a single adaptive critic NN to approximate the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Stability of the closed-loop system is proved by Lyapunov theory. Compared with the classic linear quadratic regulator (LQR) approach, the proposed ADP-based adaptive optimal control method demonstrates improved performance in the presence of parametric uncertainties (e.g., sprung mass) and unknown road displacement. Numerical simulation results of a sedan suspension system are presented to verify the effectiveness of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document