scholarly journals Multi-source Design Change Propagation Path Optimization for Complex Product Based on Weighted and Directed Network Model

2019 ◽  
Vol 55 (6) ◽  
pp. 213 ◽  
Author(s):  
LI Yupeng ◽  
LI Mengze ◽  
WANG Zhaotong
Kybernetes ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Na Zhang ◽  
Mengze Li ◽  
Haibing Ren ◽  
Yupeng Li

Purpose The development of complex products and systems is a continuously iterative process from customer requirements to a mature design. Design changes derived from multisources occur frequently during the design process. Furthermore, change propagation will impose impacts on design costs and lead times. In view of this, how to predict and control the propagation of multisource design change to reduce the changes impact is an urgent issue in the development of complex product. Design/methodology/approach In this paper, a new four-phase routing approach based on weighted and directed complex networks is proposed for multisource design change propagation. Phase I: as the foundation of this research, a product network model is established to quantify describe the complex product. Phase II: the hub nodes are identified based on the LeaderRank algorithm, which can be regarded as multisource nodes of design changes. Phase III: a calculation method for change propagation intensity is proposed, which improves the systematicness and accuracy of the evaluation results. In this paper, change propagation intensity is defined by four assessment factors: importance degree of parts, execution time of design tasks, coupling strength between parts and propagation likelihood. Phase IV: a routing method of multisource design change propagation and ant colony optimization algorithm are proposed in this paper, which can solve the coupling conflicts among change propagation paths and improve the search efficiency by using the parallel search strategy. Findings The proposed method and another method are used to search the optimal propagation path of multisource design change of a motorcycle engine; the results indicate that this method designed in this study has a positive effect on reducing the change impact, market response time and product design costs when design change occurs in the products design process. Originality/value The authors find a new method (a network-based four-phase routing approach) to search the optimal propagation path of multisource design change in complex products design.


Author(s):  
Claudia Eckert ◽  
John Clarkson ◽  
Chris Earl

Design changes can be surprisingly complex. We examine the problems they cause and discuss the problems involved in predicting how changes propagate, based on empirical studies. To assist this analysis we distinguish between (a) a static background of connectivities (b) descriptions of designs, processes, resources and requirements and (c) the dynamics of design tasks acting on descriptions. The background might consist of existing designs and subsystems, or established processes used to create them. The predictability of design change is examined in terms of this model, especially the types and scope of uncertainties and where complexities arise. An industrial example of change propagation is presented in terms of the background (connectivity) - description - action model.


Author(s):  
L. Siddharth ◽  
Prabir Sarkar

Design changes are necessary to sustain the product against competition. Due to technical, social, and financial constraints, an organization can only implement a few of many change alternatives. Hence, a wise selection of a change alternative is fundamentally influential for the growth of the organization. Organizations lack knowledge bases to effectively capture rationale for a design change; i.e., identifying the potential effects a design change. In this paper, (1) we propose a knowledge base called multiple-domain matrix that comprises the relationships among different parameters that are building blocks of a product and its manufacturing system. (2) Using the indirect change propagation method, we capture these relationships to identify the potential effects of a design change. (3) We propose a cost-based metric called change propagation impact (CPI) to quantify the effects that are captured from the multiple-domain matrix. These individual pieces of work are integrated into a web-based tool called Vatram. The tool is deployed in a design environment to evaluate its usefulness and usability.


Author(s):  
Leilei Yin ◽  
Quan Sun ◽  
Youxiong Xu ◽  
Li Shao ◽  
Dunbing Tang

Abstract Nowadays customer demand for satisfactory product developed in limited time is rapidly posing a major challenge to product design and more distributed products are developed to address these concerns. In the distributed product design, engineering change (EC) is an inevitable phenomenon and consumes much production time. It is necessary to assess the design change effectively in advance. Some methods and tools to predict and analyze the change propagation influence have been provided. From the perspective of design change duration, our work extends the method of assessing design change by incorporating risk factors from different working groups in multiple design sites, functional maintenance during the change propagation. The primary result of this work is the provision of a design support to acquire the optimal design change scheme by estimating the duration. In this paper, risk factor of distributed design is applied to the influence evaluation of change propagation, which implies an increase of change propagation influence due to the varying levels of expertise, possible lack of communication. Besides, a deterministic simulation model is proposed to assess the change propagation schemes. The model combines the effects of design change parallelism, iteration, change propagation for the distributed product design. Based on the simulation results, a more focused discussion and identification of suitable design change schemes can be made. A case study of an assembly tooling for the reinforced frame is implemented to demonstrated how the developed method can be applied. Finally, the method is initially discussed and evaluated.


2014 ◽  
Vol 6 ◽  
pp. 169097
Author(s):  
Yuliang Li ◽  
Wei Zhao ◽  
Yongsheng Ma ◽  
Lichen Hu

Engineering design changes constantly occur in a complex engineering design process. Designers have to put an appropriate procedure in place to handle these changes in order to realize successful product development in a timely and cost-effective manner. When many change propagation paths are present, selection of the best change evolution paths and distribution of change results to downstream tasks become critical to the progress management of the project. In this paper, based on the available change propagation simulation algorithm, a global sensitivity analysis method known as elementary effects (EE) is employed to rank the importance of each potential propagation path with those involved design dependencies in the process. Further, an EE-based heuristic design dependency encoding method is applied to the genetic algorithm which is then adopted to schedule the change updating process. Finally, the optimal results obtained by the complete search and the heuristic dependency encoding methods are compared to illustrate the improvements and effectiveness of the latter method.


2017 ◽  
Vol 16 (04) ◽  
pp. 1125-1149 ◽  
Author(s):  
Yu Guodong ◽  
Yang Yu ◽  
Zhang Xuefeng ◽  
Li Chi

Requirement change impact analysis has been acknowledged as one of the crucial steps in product design. In this paper, we propose a network-based method to analyze change impact. By defining interconnections among parts, we build a directed weighted complex product network model to represent the product structure under given requirements. Then, we discuss two requirement change cases and develop corresponding modification policies. To specify indirect impacts, we propose a change propagation searching model in light of Matthew Effect theory. To measure the degree of change impacts, we propose two criteria (network variation scale and extra network change cost), both of which can provide a systemic assessment of impacts. Finally, a case of clutch is presented to illustrate the proposed approach. The results can provide way of measuring overall change impacts on the product, which can support decision-makers to respond that the change request can be fulfilled or not.


Sign in / Sign up

Export Citation Format

Share Document