scholarly journals Wrinkled surface on helical cell wall thickening of vessel elements in flower style

2019 ◽  
Vol 43 (3) ◽  
pp. 358-365 ◽  
Author(s):  
Ming XING ◽  
Jian YOU ◽  
Xia CHEN
1972 ◽  
Vol 50 (9) ◽  
pp. 1795-1804 ◽  
Author(s):  
L. M. Srivastava ◽  
A. P. Singh

Differentiation of vessel elements in corn is accompanied by marked changes in nearly all organelles except plastids. The young cells increase in volume and apparently synthesize new cytoplasmic protein. The initiation of wall thickening is accompanied by an aggregation of microtubules in specific locations and an increase in the number of mitochondria and dictyosomes. During the period of active wall deposition, the endoplasmic reticulum (ER) shows a highly elaborate form, harbors intralamellar tubules, and nearly blankets those parts of the wall which remain unthickened. Dictyosomes seem to produce at least two types of vesicles, one of which may serve as a carrier of lignin precursors. The final autolysis involves a progressive removal of vacuolar membranes, plastids, dictyosomes, vesicles associated with secretion of noncellulosic polysaccharides, microtubules, and finally plasmalemma, parts of cell wall, and cytoplasm. Mitochondria and ribosomes are degenerated. The ER probably plays an important role in this autolysis. The parenchyma cells associated with vessel elements are rich in mitochondria.


1988 ◽  
Vol 66 (9) ◽  
pp. 1841-1847 ◽  
Author(s):  
Robert A. Blanchette ◽  
John R. Obst ◽  
John I. Hedges ◽  
Karen Weliky

White stringy rot, an unusual type of selective fungal decay, can be found in wood of some dicotyledonous angiosperms. Stages of advanced decay consist of a mass of vessel elements with only remnants of other cells adhering to the vessel walls. Degradation by various white rot Basidiomycetes causes loss of fibers, fiber tracheids, and parenchyma cells but not vessels. In wood of Acacia koa var. koa with a white pocket rot caused by Phellinus kawakamii, fibers and parenchyma cells were preferentially delignified. After extensive lignin removal the cellulose remaining in the secondary wall was degraded. Large vessel elements remained relatively intact after other cells were completely degraded. The resistance of vessels to degradation appears to be due to their high ligninxarbohydrate ratio, lignin monomer composition, and cell wall morphology.


2020 ◽  
Vol 26 (3) ◽  
pp. 609-621
Author(s):  
Alessandra Flávia Silveira ◽  
Maria Olívia Mercadante-Simões ◽  
Leonardo Monteiro Ribeiro ◽  
Yule Roberta Ferreira Nunes ◽  
Lucienir Pains Duarte ◽  
...  

AbstractMauritia flexuosa palms inhabit wetland environments in the dry, seasonal Brazilian savanna (Cerrado) and produce mucilaginous secretions in the stem and petiole that have a medicinal value. The present study sought to characterize the chemical natures of those secretions and to describe the anatomical structures involved in their synthesis. Chemical analyzes of the secretions, anatomical, histochemical analyses, and electron microscopy studies were performed on the roots, stipes, petioles, and leaf blades. Stipe and petiole secretions are similar, and rich in cell wall polysaccharides and pectic compounds such as rhamnose, arabinose, xylose, mannose, galactose, and glucose, which are hydrophilic largely due to their hydroxyl and carboxylate groups. Mucilaginous secretions accumulate in the lumens of vessel elements and sclerenchyma fibers of the root, stipe, petiole, and foliar veins; their synthesis involves cell wall loosening and the activities of dictyosomes. The outer faces of the cell walls of the parenchyma tissue in the mesophyll expand to form pockets that rupture and release pectocellulose substances into the intercellular spaces. The presence of mucilage in the xylem, extending from the roots to the leaf veins and continuous with the leaf apoplast, and sub-stomatal chambers suggest a strategy for plant water economy.


2020 ◽  
Vol 35 ◽  
pp. 101125 ◽  
Author(s):  
Safia Zeroual ◽  
Salah Eddine El Bakkal ◽  
Mounir Mansori ◽  
Sabine Lhernould ◽  
Céline Faugeron-Girard ◽  
...  

2019 ◽  
Vol 24 (9) ◽  
pp. 853-866 ◽  
Author(s):  
Ian W. McCahill ◽  
Samuel P. Hazen
Keyword(s):  

2020 ◽  
Vol 11 ◽  
Author(s):  
Samaneh Sadat Maleki ◽  
Kourosh Mohammadi ◽  
Ali Movahedi ◽  
Fan Wu ◽  
Kong Shu Ji

IAWA Journal ◽  
2008 ◽  
Vol 29 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Alexandre Antonio Alonso ◽  
Silvia Rodrigues Machado

The origin and structure are described of the secondary protective tissue in the stem of Erythorxylum tortuosum Mart., a fire tolerant shrubby species common in Brazilian cerrado. The highly tortuous stems are covered with thick bark which is more developed at the base of the stem. After fire in the cerrado, rhytidome fragments of the burned stem flake off, revealing newly formed cork. The first periderm appears near of the terminal buds and is iniated by periclinal divisions in subepidermal cells giving rise to radial rows of cells. The first phellogen is discernible only after the differentiation of the several radial rows of cork cells. Other phellogens have their origin in successively deeper layers of the cortex. The sucessive periderms are discontinuous around the circumference. The collapsed cells with phenolic substances and the accumulated dead cells cause the formation of discontinuous blackish lines, which delimit the sucessive periderms in the rhytidome. The rhytidome contains large quantities of sclereids developed from cell wall thickening of cortex cells. The occurrence of periderm in the young parts of the stem and of rhytidome in the older parts represents pyrophytic characteristics and may explain, in part, the fire tolerance of this species.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1715
Author(s):  
Eleftheria Roumeli ◽  
Leah Ginsberg ◽  
Robin McDonald ◽  
Giada Spigolon ◽  
Rodinde Hendrickx ◽  
...  

Individual plant cells are the building blocks for all plantae and artificially constructed plant biomaterials, like biocomposites. Secondary cell walls (SCWs) are a key component for mediating mechanical strength and stiffness in both living vascular plants and biocomposite materials. In this paper, we study the structure and biomechanics of cultured plant cells during the cellular developmental stages associated with SCW formation. We use a model culture system that induces transdifferentiation of Arabidopsis thaliana cells to xylem vessel elements, upon treatment with dexamethasone (DEX). We group the transdifferentiation process into three distinct stages, based on morphological observations of the cell walls. The first stage includes cells with only a primary cell wall (PCW), the second covers cells that have formed a SCW, and the third stage includes cells with a ruptured tonoplast and partially or fully degraded PCW. We adopt a multi-scale approach to study the mechanical properties of cells in these three stages. We perform large-scale indentations with a micro-compression system in three different osmotic conditions. Atomic force microscopy (AFM) nanoscale indentations in water allow us to isolate the cell wall response. We propose a spring-based model to deconvolve the competing stiffness contributions from turgor pressure, PCW, SCW and cytoplasm in the stiffness of differentiating cells. Prior to triggering differentiation, cells in hypotonic pressure conditions are significantly stiffer than cells in isotonic or hypertonic conditions, highlighting the dominant role of turgor pressure. Plasmolyzed cells with a SCW reach similar levels of stiffness as cells with maximum turgor pressure. The stiffness of the PCW in all of these conditions is lower than the stiffness of the fully-formed SCW. Our results provide the first experimental characterization of the mechanics of SCW formation at single cell level.


Sign in / Sign up

Export Citation Format

Share Document