Mucilaginous Secretions in the Xylem and Leaf Apoplast of the Swamp Palm Mauritia flexuosa L.f. (Arecaceae)

2020 ◽  
Vol 26 (3) ◽  
pp. 609-621
Author(s):  
Alessandra Flávia Silveira ◽  
Maria Olívia Mercadante-Simões ◽  
Leonardo Monteiro Ribeiro ◽  
Yule Roberta Ferreira Nunes ◽  
Lucienir Pains Duarte ◽  
...  

AbstractMauritia flexuosa palms inhabit wetland environments in the dry, seasonal Brazilian savanna (Cerrado) and produce mucilaginous secretions in the stem and petiole that have a medicinal value. The present study sought to characterize the chemical natures of those secretions and to describe the anatomical structures involved in their synthesis. Chemical analyzes of the secretions, anatomical, histochemical analyses, and electron microscopy studies were performed on the roots, stipes, petioles, and leaf blades. Stipe and petiole secretions are similar, and rich in cell wall polysaccharides and pectic compounds such as rhamnose, arabinose, xylose, mannose, galactose, and glucose, which are hydrophilic largely due to their hydroxyl and carboxylate groups. Mucilaginous secretions accumulate in the lumens of vessel elements and sclerenchyma fibers of the root, stipe, petiole, and foliar veins; their synthesis involves cell wall loosening and the activities of dictyosomes. The outer faces of the cell walls of the parenchyma tissue in the mesophyll expand to form pockets that rupture and release pectocellulose substances into the intercellular spaces. The presence of mucilage in the xylem, extending from the roots to the leaf veins and continuous with the leaf apoplast, and sub-stomatal chambers suggest a strategy for plant water economy.

Crop Science ◽  
2003 ◽  
Vol 43 (2) ◽  
pp. 571 ◽  
Author(s):  
S. K. Stombaugh ◽  
J. H. Orf ◽  
H. G. Jung ◽  
D. A. Somers

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.


2021 ◽  
Vol 22 (6) ◽  
pp. 3077
Author(s):  
Zhenzhen Hao ◽  
Xiaolu Wang ◽  
Haomeng Yang ◽  
Tao Tu ◽  
Jie Zhang ◽  
...  

Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document