vacuolar membranes
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 17)

H-INDEX

30
(FIVE YEARS 1)

2021 ◽  
pp. 167360
Author(s):  
Most Naoshia Tasnin ◽  
Kisara Ito ◽  
Haruko Katsuta ◽  
Tsuneyuki Takuma ◽  
Tasnuva Sharmin ◽  
...  

Author(s):  
Pin-Chao Liao ◽  
Enrique J. Garcia ◽  
Gary Tan ◽  
Catherine A. Tsang ◽  
Liza A. Pon

Microlipophagy (µLP), degradation of lipid droplets (LDs) by microautophagy, occurs by autophagosome-independent direct uptake of LDs at lysosomes/vacuoles in response to nutrient limitations and ER stressors in Saccharomyces cerevisiae. In nutrient-limited yeast, liquid-ordered (Lo) microdomains, sterol-rich raft-like regions in vacuolar membranes, are sites of membrane invagination during LD uptake. The endosome sorting complex required for transport (ESCRT) is required for sterol transport during Lo formation under these conditions. However, ESCRT has been implicated in mediating membrane invagination during µLP induced by ER stressors or the diauxic shift from glycolysis- to respiration-driven growth. Here, we report that ER stress induced by lipid imbalance and other stressors induces Lo microdomain formation. This process is ESCRT-independent and dependent upon Niemann-Pick type C sterol transfer proteins. Inhibition of ESCRT or Lo microdomain formation partially inhibits lipid imbalance-induced µLP, while inhibition of both blocks this µLP. Finally, although the ER stressors dithiothreitol or tunicamycin induce Lo microdomains, µLP in response to these stressors is ESCRT-dependent and Lo microdomain-independent. Our findings reveal that Lo microdomain formation is a yeast stress response, and stress-induced Lo microdomain formation occurs by stressor-specific mechanisms. Moreover, ESCRT and Lo microdomains play functionally distinct roles in LD uptake during stress-induced µLP.


Science ◽  
2021 ◽  
Vol 373 (6554) ◽  
pp. 586-590
Author(s):  
Ivan Radin ◽  
Ryan A. Richardson ◽  
Joshua H. Coomey ◽  
Ethan R. Weiner ◽  
Carlisle S. Bascom ◽  
...  

In animals, PIEZOs are plasma membrane–localized cation channels involved in diverse mechanosensory processes. We investigated PIEZO function in tip-growing cells in the moss Physcomitrium patens and the flowering plant Arabidopsis thaliana. PpPIEZO1 and PpPIEZO2 redundantly contribute to the normal growth, size, and cytoplasmic calcium oscillations of caulonemal cells. Both PpPIEZO1 and PpPIEZO2 localized to vacuolar membranes. Loss-of-function, gain-of-function, and overexpression mutants revealed that moss PIEZO homologs promote increased complexity of vacuolar membranes through tubulation, internalization, and/or fission. Arabidopsis PIEZO1 also localized to the tonoplast and is required for vacuole tubulation in the tips of pollen tubes. We propose that in plant cells the tonoplast has more freedom of movement than the plasma membrane, making it a more effective location for mechanosensory proteins.


2021 ◽  
Vol 561 ◽  
pp. 158-164
Author(s):  
Tasnuva Sharmin ◽  
Shamsul Morshed ◽  
Most Naoshia Tasnin ◽  
Tsuneyuki Takuma ◽  
Takashi Ushimaru

2020 ◽  
Author(s):  
Yoshinori Abe ◽  
Keisuke Meguriya ◽  
Takahisa Matsuzaki ◽  
Teruki Sugiyama ◽  
Hiroshi Y. Yoshikawa ◽  
...  

AbstractIntracellular sedimentation of highly dense, starch-filled amyloplasts toward the gravity vector is likely a key initial step for gravity sensing in plants. However, recent live-cell imaging technology revealed that most amyloplasts continuously exhibit dynamic, saltatory movements in the endodermal cells of Arabidopsis stems. These complicated movements led to questions about what type of amyloplast movement triggers gravity sensing. Here we show that a confocal microscope equipped with optical tweezers can be a powerful tool to trap and manipulate amyloplasts noninvasively, while simultaneously observing cellular responses such as vacuolar dynamics in living cells. A near-infrared (λ = 1064 nm) laser that was focused into the endodermal cells at 1 mW of laser power attracted and captured amyloplasts at the laser focus. The optical force exerted on the amyloplasts was theoretically estimated to be up to 1 pN. Interestingly, endosomes and trans-Golgi networks were trapped at 30 mW but not at 1 mW, which is probably due to lower refractive indices of these organelles than that of the amyloplasts. Because amyloplasts are in close proximity to vacuolar membranes in endodermal cells, their physical interaction could be visualized in real time. The vacuolar membranes drastically stretched and deformed in response to the manipulated movements of amyloplasts by optical tweezers. Our new method provides deep insights into the biophysical properties of plant organelles in vivo and opens a new avenue for studying gravity-sensing mechanisms in plants.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Shamsul Morshed ◽  
Most Naoshia Tasnin ◽  
Takashi Ushimaru

Abstract Background Microautophagy, which degrades cargos by direct lysosomal/vacuolar engulfment of cytoplasmic cargos, is promoted after nutrient starvation and the inactivation of target of rapamycin complex 1 (TORC1) protein kinase. In budding yeast, microautophagy has been commonly assessed using processing assays with green fluorescent protein (GFP)-tagged vacuolar membrane proteins, such as Vph1 and Pho8. The endosomal sorting complex required for transport (ESCRT) system is proposed to be required for microautophagy, because degradation of vacuolar membrane protein Vph1 was compromised in ESCRT-defective mutants. However, ESCRT is also critical for the vacuolar sorting of most vacuolar proteins, and hence reexamination of the involvement of ESCRT in microautophagic processes is required. Results Here, we show that the Vph1-GFP processing assay is unsuitable for estimating the involvement of ESCRT in microautophagy, because Vph1-GFP accumulated highly in the prevacuolar class E compartment in ESCRT mutants. In contrast, GFP-Pho8 and Sna4-GFP destined for vacuolar membranes via an alternative adaptor protein-3 (AP-3) pathway, were properly localized on vacuolar membranes in ESCRT-deficient cells. Nevertheless, microautophagic degradation of GFP-Pho8 and Sna4-GFP after TORC1 inactivation was hindered in ESCRT mutants, indicating that ESCRT is indeed required for microautophagy after nutrient starvation and TORC1 inactivation. Conclusions These findings provide evidence for the direct role of ESCRT in microautophagy induction.


2020 ◽  
Author(s):  
Shamsul Morshed ◽  
Most Naoshia Tasnin ◽  
Takashi Ushimaru

Abstract Background: Microautophagy, which degrades cargos by direct lysosomal/vacuolar engulfment of cytoplasmic cargos, is promoted after nutrient starvation and the inactivation of target of rapamycin complex 1 (TORC1) protein kinase. In budding yeast, microautophagy has been commonly assessed using processing assays with green fluorescent protein (GFP)-tagged vacuolar membrane proteins, such as Vph1 and Pho8. The endosomal sorting complex required for transport (ESCRT) system is proposed to be required for microautophagy, because degradation of vacuolar membrane protein Vph1 was compromised in ESCRT-defective mutants. However, ESCRT is also critical for the vacuolar sorting of most vacuolar proteins, and hence reexamination of the involvement of ESCRT in microautophagic processes is required.Results: Here, we show that the Vph1-GFP processing assay is unsuitable for estimating the involvement of ESCRT in microautophagy, because Vph1-GFP accumulated highly in the prevacuolar class E compartment in ESCRT mutants. In contrast, GFP-Pho8 and Sna4-GFP destined for vacuolar membranes via an alternative adaptor protein-3 (AP-3) pathway, were properly localized on vacuolar membranes in ESCRT-deficient cells. Nevertheless, microautophagic degradation of GFP-Pho8 and Sna4-GFP after TORC1 inactivation was hindered in ESCRT mutants, indicating that ESCRT is indeed required for microautophagy after nutrient starvation and TORC1 inactivation.Conclusions: These findings provide evidence for the direct role of ESCRT in microautophagy induction.


2020 ◽  
Author(s):  
Shamsul Morshed ◽  
Most Naoshia Tasnin ◽  
Takashi Ushimaru

Abstract Background: Microautophagy, which degrades cargos by direct lysosomal/vacuolar engulfment of cytoplasmic cargos, is promoted after nutrient starvation and the inactivation of target of rapamycin complex 1 (TORC1) protein kinase. In budding yeast, microautophagy has been commonly assessed using processing assays with green fluorescent protein (GFP)-tagged vacuolar membrane proteins, such as Vph1 and Pho8. The endosomal sorting complex required for transport (ESCRT) system is proposed to be required for microautophagy, because degradation of vacuolar membrane protein Vph1 was compromised in ESCRT-defective mutants. However, ESCRT is also critical for the vacuolar sorting of most vacuolar proteins, and hence reexamination of the involvement of ESCRT in microautophagic processes is required.Results: Here, we show that the Vph1-GFP processing assay is unsuitable for estimating the involvement of ESCRT in microautophagy, because Vph1-GFP accumulated highly in the prevacuolar class E compartment in ESCRT mutants. In contrast, GFP-Pho8 and Sna4-GFP destined for vacuolar membranes via an alternative adaptor protein-3 (AP-3) pathway, were properly localized on vacuolar membranes in ESCRT-deficient cells. Nevertheless, microautophagic degradation of GFP-Pho8 and Sna4-GFP after TORC1 inactivation was hindered in ESCRT mutants, indicating that ESCRT is indeed required for microautophagy after nutrient starvation and TORC1 inactivation. Conclusion: These findings provide evidence for the direct role of ESCRT in microautophagy induction.


2020 ◽  
Author(s):  
Ivan Radin ◽  
Ryan A. Richardson ◽  
Ethan R. Weiner ◽  
Carlisle S. Bascom ◽  
Magdalena Bezanilla ◽  
...  

AbstractThe perception of mechanical force is a fundamental property of most, if not all cells. PIEZO channels are plasma membrane-embedded mechanosensitive calcium channels that play diverse and essential roles in mechanobiological processes in animals1,2. PIEZO channel homologs are found in plants3,4, but their role(s) in the green lineage are almost completely unknown. Plants and animals diverged approximately 1.5 billion years ago, independently evolved multicellularity, and have vastly different cellular mechanics5. Here, we investigate PIEZO channel function in the moss Physcomitrium patens, a representative of one of the first land plant lineages. PpPIEZO1 and PpPIEZO2 were redundantly required for normal growth, size, and shape of tip-growing caulonema cells. Both were localized to vacuolar membranes and facilitated the release of calcium into the cytosol in response to hypoosmotic shock. Loss-of-function (ΔPppiezo1/2) and gain-of-function (PpPIEZO2-R2508K and -R2508H) mutants revealed a role for moss PIEZO homologs in regulating vacuole morphology. Our work here shows that plant and animal PIEZO homologs have diverged in both subcellular localization and in function, likely co-opted to serve different needs in each lineage. The plant homologs of PIEZO channels thus provide a compelling lens through which to study plant mechanobiology and the evolution of mechanoperceptive strategies in multicellular eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document