Removal of Selected Organic Compounds in Aqueous Solutions by Activated Carbon

2008 ◽  
Vol 1 (3) ◽  
pp. 111-123 ◽  
Author(s):  
S. Gokturk ◽  
S. Kaluc
1973 ◽  
Vol 8 (1) ◽  
pp. 110-121
Author(s):  
A. Netzer ◽  
J.D. Norman

Abstract The merits of activated carbon for removal of organic compounds from wastewater have been well documented in the literature. On the other hand there is a lack of published data on the use of activated carbon for the removal of trace metals from wastewater. Experiments were designed to assess the possibility that activated carbon treatment would remove aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, silver and zinc from wastewater. All metals studied were tested over the pH range 3-11. Greater than 99.5% removal was achieved by pH adjustment and activated carbon treatment for most of the metals tested.


1987 ◽  
Vol 19 (3-4) ◽  
pp. 471-482 ◽  
Author(s):  
W. J. Weber ◽  
B. E. Jones ◽  
L. E. Katz

The addition of powdered activated carbon (PAC) to activated sludge treatment systems to enhance removal of specific toxic organic compounds from wastewater was evaluated. Nine organic compounds encompassing a range of solubility, volatility, biodegradability, and adsorptive properties were studied. Kate and equilibrium investigations were conducted to quantify the removal mechanisms of volatilization, biodegradation, biosorption, and carbon adsorption. Results from steady-state bioreactor studies showed that the addition of less than 100 mg/ℓ powdered activated carbon to the influent did not enhance the removal of the biodegradable target compounds investigated: benzene, toluene, ethylbenzene, o-xylene, chlorobenzene, and nitrobenzene. Significantly improved removals of the poorly degradable and non-biodegradable compounds 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, and lindane occurred at influent powdered carbon concentrations in the 12.5 to 25 mg/ℓ range. Influent powdered carbon concentrations of 100 mg/ℓ effected overall removals of greater than 90%. The addition of powdered activated carbon not only reduced effluent concentrations but also reduced the amounts of the volatile compounds stripped to the atmosphere.


2000 ◽  
Vol 89 (12) ◽  
pp. 1620-1625 ◽  
Author(s):  
Nina Ni ◽  
Mohamed M. El‐Sayed ◽  
Tapan Sanghvi ◽  
Samuel H. Yalkowsky

Heliyon ◽  
2021 ◽  
pp. e07191
Author(s):  
Fateme Barjasteh-Askari ◽  
Mojtaba Davoudi ◽  
Maryam Dolatabadi ◽  
Saeid Ahmadzadeh

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1207
Author(s):  
Aled D. Roberts ◽  
Jet-Sing M. Lee ◽  
Adrián Magaz ◽  
Martin W. Smith ◽  
Michael Dennis ◽  
...  

Fabrics comprised of porous fibres could provide effective passive protection against chemical and biological (CB) threats whilst maintaining high air permeability (breathability). Here, we fabricate hierarchically porous fibres consisting of regenerated silk fibroin (RSF) and activated-carbon (AC) prepared through two fibre spinning techniques in combination with ice-templating—namely cryogenic solution blow spinning (Cryo-SBS) and cryogenic wet-spinning (Cryo-WS). The Cryo-WS RSF fibres had exceptionally small macropores (as low as 0.1 µm) and high specific surface areas (SSAs) of up to 79 m2·g−1. The incorporation of AC could further increase the SSA to 210 m2·g−1 (25 wt.% loading) whilst also increasing adsorption capacity for volatile organic compounds (VOCs).


2007 ◽  
Vol 253 (13) ◽  
pp. 5741-5746 ◽  
Author(s):  
C.O. Ania ◽  
B. Cabal ◽  
C. Pevida ◽  
A. Arenillas ◽  
J.B. Parra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document