fibre spinning
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
Margret Weissbach ◽  
Marius Neugebauer ◽  
Anna-Christin Joel

AbstractSpider silk attracts researchers from the most diverse fields, such as material science or medicine. However, still little is known about silk aside from its molecular structure and material strength. Spiders produce many different silks and even join several silk types to one functional unit. In cribellate spiders, a complex multi-fibre system with up to six different silks affects the adherence to the prey. The assembly of these cribellate capture threads influences the mechanical properties as each fibre type absorbs forces specifically. For the interplay of fibres, spinnerets have to move spatially and come into contact with each other at specific points in time. However, spinneret kinematics are not well described though highly sophisticated movements are performed which are in no way inferior to the movements of other flexible appendages. We describe here the kinematics for the spinnerets involved in the cribellate spinning process of the grey house spider, Badumna longinqua, as an example of spinneret kinematics in general. With this information, we set a basis for understanding spinneret kinematics in other spinning processes of spiders and additionally provide inspiration for biomimetic multiple fibre spinning.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1207
Author(s):  
Aled D. Roberts ◽  
Jet-Sing M. Lee ◽  
Adrián Magaz ◽  
Martin W. Smith ◽  
Michael Dennis ◽  
...  

Fabrics comprised of porous fibres could provide effective passive protection against chemical and biological (CB) threats whilst maintaining high air permeability (breathability). Here, we fabricate hierarchically porous fibres consisting of regenerated silk fibroin (RSF) and activated-carbon (AC) prepared through two fibre spinning techniques in combination with ice-templating—namely cryogenic solution blow spinning (Cryo-SBS) and cryogenic wet-spinning (Cryo-WS). The Cryo-WS RSF fibres had exceptionally small macropores (as low as 0.1 µm) and high specific surface areas (SSAs) of up to 79 m2·g−1. The incorporation of AC could further increase the SSA to 210 m2·g−1 (25 wt.% loading) whilst also increasing adsorption capacity for volatile organic compounds (VOCs).


2020 ◽  
Vol 28 (1(139)) ◽  
pp. 26-35
Author(s):  
Iwona Karbownik ◽  
Tomasz Rybicki

The aim and scope of this work included the design and practical implementation of a digital monitoring system for the polyacrylonitrile (PAN) fibre spinning process line used for the creation of different PAN based fibres doped with silver (Ag), polyaniline (PANI), carbon nanotubes (CNT) and 2,3,5-triphenyltetrazolium chloride (TTC). After the collecting and processing of process parameters, including bath temperatures and the rotational speed of the feeding-receiving points, available in the form of digital data, they were compared with the appearance of fibres obtained (their surface structure and cross-section shape) and with the results of the fibre specific strength (WtP). Archiving of speed and temperature measurement data allowed to create a database combining the process parameters with the parameters of the fibres obtained. Online monitoring of the parameters enabled programmable change of the speed and temperature in important parts of the process in order to develop appropriate production profiles.


2019 ◽  
Author(s):  
Matthias Wessling

Microfluidics is an established multidisciplinary research domain with widespread applications in the fields of medicine, biotechnology and engineering. Conventional production methods of microfluidic chips have been limited to planar structures, preventing the exploitation of truly three-dimensional architectures for applications such as multi-phase droplet preparation or wet-phase fibre spinning. Here the challenge of nanofabrication inside a microfluidic chip is tackled for the showcase of a spider-inspired spinneret. Multiphoton lithography, an additive manufacturing method, was used to produce free-form microfluidic masters, subsequently replicated by soft lithography. Into the resulting microfluidic device, a three-dimensional spider-inspired spinneret was directly fabricated in-chip via multiphoton lithography. Applying this unprecedented fabrication strategy, the to date smallest printed spinneret nozzle is produced. This spinneret resides tightly sealed, connecting it to the macroscopic world. Its functionality is demonstrated by wet-spinning of single-digit micron fibres through a polyacrylonitrile coagulation process induced by a water sheath layer. The methodology developed here demonstrates fabrication strategies to interface complex architectures into classical microfluidic platforms. Using multiphoton lithography for in-chip fabrication adopts a high spatial resolution technology for improving geometry and thus flow control inside microfluidic chips. The showcased fabrication methodology is generic and will be applicable to multiple challenges in fluid control and beyond.


2018 ◽  
Vol 78 ◽  
pp. 111-122 ◽  
Author(s):  
Zhaoying Li ◽  
Jack Tuffin ◽  
Iek M. Lei ◽  
Francesco S. Ruggeri ◽  
Natasha S. Lewis ◽  
...  
Keyword(s):  

2018 ◽  
Vol 851 ◽  
pp. 573-605 ◽  
Author(s):  
Karan Gupta ◽  
Paresh Chokshi

The stability of fibre spinning flow of a polymeric fluid is analysed in the presence of thermal effects. The spinline is modelled as a one-dimensional slender-body filament of the entangled polymer solution. The previous study (Gupta & Chokshi,J. Fluid Mech., vol. 776, 2015, pp. 268–289) analysed linear and nonlinear stability behaviour of an isothermal extensional flow in the air gap during the fibre spinning process. The present study extends the analysis to take in to account the non-isothermal spinning flow in which the spinline loses heat by convection to the surrounding air as well as by solvent evaporation. The nonlinear rheology of the polymer solution is described using the eXtended Pom-Pom (XPP) model. The non-isothermal effects influence the rheology of the fluid through viscosity, which is taken to be temperature and concentration dependent. The linear stability analysis is carried out to obtain the draw ratio for the onset of instability, known as the draw resonance, and a stability diagram is constructed in the$DR_{c}{-}De$plane.$DR_{c}$is the critical draw ratio, and$De$is the flow Deborah number. The enhancement in viscosity driven by spinline cooling leads to postponement in the onset of draw resonance, indicating the stabilising role of non-isothermal effects. Weakly nonlinear stability analysis is also performed to reveal the role of nonlinearities in the finite amplitude manifold in the vicinity of the flow transition point. For low to moderate Deborah numbers, the bifurcation is supercritical, and the flow attains an oscillatory state with an equilibrium amplitude post-transition when$DR>DR_{c}$. The equilibrium amplitude of the resonating state is found to be smaller when non-isothermal effects are incorporated in comparison to the isothermal spinning flow. For very fast flows in the regime of high Deborah numbers, the finite amplitude manifold crosses over to a subcritical state. In this limit, the nonlinearities render the flow unstable even in the linearly stable regime of$DR<DR_{c}$.


2015 ◽  
Vol 776 ◽  
pp. 268-289 ◽  
Author(s):  
Karan Gupta ◽  
Paresh Chokshi

The extensional flow of a polymeric fluid during the fibre spinning process is studied for finite-amplitude stability behaviour. The spinning flow is assumed to be inertialess and isothermal. The nonlinear extensional rheology of the polymer is described with the help of the eXtended Pom-Pom (XXP) model, which is known to exhibit a significant strain hardening effect necessary for fibre spinning applications. The linear stability analysis predicts an instability known as draw resonance when the draw ratio, $\mathit{DR}$, defined as the ratio of the velocities at the two ends of the fibre in the air gap, exceeds a certain critical value, $\mathit{DR}_{c}$. The critical draw ratio $\mathit{DR}_{c}$ depends on the fluid elasticity represented by the Deborah number, $\mathit{De}={\it\lambda}v_{0}/L$, the ratio of the polymer relaxation time to the flow time scale, thus constructing a stability diagram in the $\mathit{DR}_{c}$–$\mathit{De}$ plane. Here, ${\it\lambda}$ is the characteristic relaxation time of the polymer, $v_{0}$ is the extrudate velocity through the die exit and $L$ is the length of the air gap for the spinning flow. In the present study, we carry out a weakly nonlinear stability analysis to examine the dynamics of the disturbance amplitude in the vicinity of the transition point. The analysis reveals the nature of the bifurcation at the transition point and constructs a finite-amplitude manifold providing insight into the draw resonance phenomena. The effect of the fluid elasticity on the nature of the bifurcation and the finite-amplitude branch is examined, and the findings are correlated to the extensional rheological behaviour of the polymer fluid. For flows at small Deborah number, the Landau constant, which captures the role of nonlinearities, is found to be negative, indicating supercritical Hopf bifurcation at the transition point. In the linearly unstable region, the equilibrium amplitude of the disturbance is estimated and shows a limit cycle behaviour. As the fluid elasticity is increased, initially the equilibrium amplitude is found to decrease below its Newtonian value, reaching the lowest value for $\mathit{De}$ when the strain hardening effect is maximum. With further increase in elasticity, the material undergoes strain softening behaviour which leads to an increase in the equilibrium amplitude of the oscillations in the fibre cross-section area, indicating a destabilizing effect of elasticity in this regime. Interestingly, at a certain high Deborah number, the bifurcation crosses over from supercritical to subcritical nature. In the subcritical regime, a threshold amplitude branch is constructed from the amplitude equation.


Sign in / Sign up

Export Citation Format

Share Document