Evaluation of UVA Cytotoxicity for Human Endothelium in an Ex Vivo Corneal Cross-linking Experimental Setting

2016 ◽  
Vol 32 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Pepijn Mooren ◽  
Laure Gobin ◽  
Nezahat Bostan ◽  
Kristien Wouters ◽  
Nadia Zakaria ◽  
...  
Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 671
Author(s):  
Ana Osuna ◽  
Anna Ulldemolins ◽  
Hector Sanz-Fraile ◽  
Jorge Otero ◽  
Núria Farré ◽  
...  

This paper describes the design, construction and testing of an experimental setting, making it possible to study the endothelium under different pathophysiological conditions. This novel experimental approach allows the application of the following stimuli to an ex vivo vessel in a physiological bath: (a) a realistic intravascular pressure waveform defined by the user; (b) shear stress in the endothelial layer since, in addition to the pressure waveform, the flow through the vessel can be independently controlled by the user; (c) conditions of hypo/hyperoxia and hypo/hypercapnia in an intravascular circulating medium. These stimuli can be applied alone or in different combinations to study possible synergistic or antagonistic effects. The setting performance is illustrated by a proof of concept in an ex vivo rabbit aorta. The experimental setting is easy to build by using very low-cost materials widely available. Online Supplement files provide all the technical information (e.g., circuits, codes, 3D printer drivers) following an open-source hardware approach for free replication.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Johnny E. Moore ◽  
Davide Schiroli ◽  
C. B. Tara Moore

Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies donein vitroorex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it.


2020 ◽  
Vol 258 (10) ◽  
pp. 2173-2184 ◽  
Author(s):  
Robert Herber ◽  
Mathew Francis ◽  
Eberhard Spoerl ◽  
Lutz E. Pillunat ◽  
Frederik Raiskup ◽  
...  

Abstract Purpose To assess corneal stiffening of standard (S-CXL) and accelerated (A-CXL) cross-linking protocols by dynamic corneal response parameters and corneal bending stiffness (Kc[mean/linear]) derived from Corvis (CVS) Scheimpflug-based tonometry. These investigations were validated by corneal tensile stiffness (K[ts]), derived from stress-strain extensometry in ex vivo porcine eyes. Methods Seventy-two fresh-enucleated and de-epithelized porcine eyes were soaked in 0.1% riboflavin solution including 10% dextran for 10 min. The eyes were separated into four groups: controls (n = 18), S-CXL (intensity in mW/cm2*time in min; 3*30) (n = 18), A-CXL (9*10) (n = 18), and A-CXL (18*5) (n = 18), respectively. CXL was performed using CCL Vario. CVS measurements were performed on all eyes. Subsequently, corneal strips were extracted by a double-bladed scalpel and used for stress-strain measurements. K[ts] was calculated from a force-displacement curve. Mean corneal stiffness (Kc[mean]) and constant corneal stiffness (Kc[linear]) were calculated from raw CVS data. Results In CVS, biomechanical effects of cross-linking were shown to have a significantly decreased deflection amplitude as well as integrated radius, an increased IOP, and SP A1 (P < 0.05). Kc[mean]/Kc[linear] were significantly increased after CXL (P < 0.05). In the range from 2 to 6% strain, K[ts] was significantly higher in S-CXL (3*30) compared to A-CXL (9*10), A-CXL (18*5), and controls (P < 0.05). At 8% to 10% strain, all protocols induced a higher stiffness than controls (P < 0.05). Conclusion Several CVS parameters and Kc[mean] as well as Kc[linear] verify corneal stiffening effect after CXL on porcine eyes. S-CXL seems to have a higher tendency of stiffening than A-CXL protocols have, which was demonstrated by Scheimpflug-based tonometry and stress-strain extensometry.


2017 ◽  
Vol 33 (3) ◽  
pp. 171-177 ◽  
Author(s):  
Andrea Cruzat ◽  
Anita N. Shukla ◽  
Samer N. Arafat ◽  
Saleh Alageel ◽  
Clara Colon ◽  
...  
Keyword(s):  
Ex Vivo ◽  

Cornea ◽  
2012 ◽  
Vol 31 (3) ◽  
pp. 222-226 ◽  
Author(s):  
Markus Tschopp ◽  
Johannes Stary ◽  
Beatrice E Frueh ◽  
Wolfgang Thormann ◽  
Julie De Smet ◽  
...  

2020 ◽  
Vol 214 ◽  
pp. 127-133
Author(s):  
Jan Lammer ◽  
Maria Laggner ◽  
Niklas Pircher ◽  
Isaak Fischinger ◽  
Christina Hofmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document