scholarly journals Blow-up prevention by quadratic degradation in a higher-dimensional chemotaxis-growth model with indirect attractant production

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jianing Xie

<p style='text-indent:20px;'>This paper deals with a boundary-value problem in three-dimensional smoothly bounded domains for a coupled chemotaxis-growth system generalizing the prototype</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$\begin{align} \left\{\begin{array}{ll} u_t = \Delta u-\nabla\cdot(u\nabla v)+\mu u(1-u),\quad x\in \Omega, t&gt;0,\\ { }{ v_t = \Delta v- v +w},\quad x\in \Omega, t&gt;0,\\ { }{\tau w_t+\delta w = u},\quad x\in \Omega, t&gt;0\\ \end{array}\right. \end{align} (*)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in a smoothly bounded domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset\mathbb{R}^N(N\geq1) $\end{document}</tex-math></inline-formula> under zero-flux boundary conditions, which describe the spread and aggregative behavior of the Mountain Pine Beetle in forest habitat, where the parameters <inline-formula><tex-math id="M2">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> as well as <inline-formula><tex-math id="M3">\begin{document}$ \delta $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ \tau $\end{document}</tex-math></inline-formula> are positive. Based on an <b>new</b> energy-type argument combined with maximal Sobolev regularity theory, it is proved that global classical solutions exist whenever</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \mu&gt;\left\{ \begin{array}{ll} {0, \; \; \; {\rm{if}}\; \; N\leq4},\\ {\frac{(N-4)_{+}}{N-2}\max\{1,\lambda_{0}\},\; \; \; {\rm{if}}\; \; N\geq5}\\ \end{array} \right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>and the initial data <inline-formula><tex-math id="M5">\begin{document}$ (u_0,v_0,w_0) $\end{document}</tex-math></inline-formula> are sufficiently regular. Here <inline-formula><tex-math id="M6">\begin{document}$ \lambda_0 $\end{document}</tex-math></inline-formula> is a positive constant which is corresponding to the maximal Sobolev regularity. This extends some recent results by several authors.</p>

2016 ◽  
Vol 26 (11) ◽  
pp. 2111-2128 ◽  
Author(s):  
Bingran Hu ◽  
Y. Tao

This work considers the chemotaxis-growth system [Formula: see text] in a smoothly bounded domain [Formula: see text], with zero-flux boundary conditions, where [Formula: see text] and [Formula: see text] are given positive parameters. In striking contrast to the corresponding three-dimensional two-component chemo-taxis-growth system to which the global existence or blow-up of classical solutions largely remains open when [Formula: see text] is small, it is shown that whenever [Formula: see text] [Formula: see text] and [Formula: see text], for any given non-negative and suitably smooth initial data [Formula: see text] satisfying [Formula: see text], the system (⋆) admits a unique global classical solution that is uniformly-in-time bounded, which rules out the possibility of blow-up of solutions in finite time or in infinite time. Moreover, under the fully explicit condition [Formula: see text] the solution [Formula: see text] exponentially converges to the constant stationary solution [Formula: see text] in the norm of [Formula: see text] as [Formula: see text].


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jincheng Shi ◽  
Shengzhong Xiao

We are concerned with the global existence of classical solutions for a general model of viscosity long-short wave equations. Under suitable initial conditions, the existence of the global classical solutions for the viscosity long-short wave equations is proved. If it does not exist globally, the life span which is the largest time where the solutions exist is also obtained.


Author(s):  
Jörg Weber

The time evolution of a collisionless plasma is modeled by the Vlasov-Maxwell system which couples the Vlasov equation (the transport equation) with the Maxwell equations of electrodynamics. We only consider a two-dimensional version of the problem since existence of global, classical solutions of the full three-dimensional problem is not known. We add external currents to the system, in applications generated by coils, to control the plasma properly. After considering global existence of solutions to this system, differentiability of the control-to-state operator is proved. In applications, on the one hand, we want the shape of the plasma to be close to some desired shape. On the other hand, a cost term penalizing the external currents shall be as small as possible. These two aims lead to minimizing some objective function. We restrict ourselves to only such control currents that are realizable in applications. After that, we prove existence of a minimizer and deduce first order optimality conditions and the adjoint equation.


2017 ◽  
Vol 27 (09) ◽  
pp. 1645-1683 ◽  
Author(s):  
Youshan Tao ◽  
Michael Winkler

This work considers the Keller–Segel-type parabolic system [Formula: see text] in a smoothly bounded convex domain [Formula: see text], [Formula: see text], under no-flux boundary conditions, which has recently been proposed as a model for processes of stripe pattern formation via so-called “self-trapping” mechanisms. In the two-dimensional case, in stark contrast to the classical Keller–Segel model in which large-data solutions may blow up in finite time, for all suitably regular initial data the associated initial value problem is seen to possess a globally-defined bounded classical solution, provided that the motility function [Formula: see text] is uniformly positive. In the corresponding higher-dimensional setting, it is shown that certain weak solutions exist globally, where in the particular three-dimensional case this solution actually is bounded and classical if the initial data are suitably small in the norm of [Formula: see text]. Finally, if still [Formula: see text] but merely the physically interpretable quantity [Formula: see text] is appropriately small, then the above-weak solutions are proved to become eventually smooth and bounded.


1999 ◽  
Vol 154 ◽  
pp. 157-169 ◽  
Author(s):  
Huicheng Yin ◽  
Qingjiu Qiu

AbstractIn this paper, for three dimensional compressible Euler equations with small perturbed initial data which are axisymmetric, we prove that the classical solutions have to blow up in finite time and give a complete asymptotic expansion of lifespan.


2017 ◽  
Vol 16 (01) ◽  
pp. 55-84 ◽  
Author(s):  
Xiaofeng Hou ◽  
Hongyun Peng ◽  
Changjiang Zhu

In this paper, we investigate the global well-posedness of classical solutions to three-dimensional Cauchy problem of the compressible Navier–Stokes type system with a Korteweg stress tensor under the condition that the initial energy is small. This result improves previous results obtained by Hattori–Li in [H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type, SIAM J. Math. Anal. 25 (1994) 85–98; H. Hattori and D. Li. Global solutions of a high-dimensional system for Korteweg materials. J. Math. Anal. Appl. 198 (1996) 84–97.], where the existence of the classical solution is established for initial data close to an equilibrium in some Sobolev space [Formula: see text].


2013 ◽  
Vol 10 (03) ◽  
pp. 537-562 ◽  
Author(s):  
MYEONGJU CHAE ◽  
KYUNGKEUN KANG ◽  
JIHOON LEE

We consider a system coupling the compressible Navier–Stokes equations to the Vlasov–Fokker–Planck equation on three-dimensional torus. The coupling arises from a drag force exerted by each other. We establish the existence of the global classical solutions close to an equilibrium, and further prove that the solutions converge to the equilibrium exponentially fast.


Sign in / Sign up

Export Citation Format

Share Document