scholarly journals Fractional order optimal control problems with free terminal time

2014 ◽  
Vol 10 (2) ◽  
pp. 363-381 ◽  
Author(s):  
Shakoor Pooseh ◽  
◽  
Ricardo Almeida ◽  
Delfim F. M. Torres
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Shakoor Pooseh ◽  
Ricardo Almeida ◽  
Delfim F. M. Torres

We review recent results obtained to solve fractional order optimal control problems with free terminal time and a dynamic constraint involving integer and fractional order derivatives. Some particular cases are studied in detail. A numerical scheme is given, based on expansion formulas for the fractional derivative. The efficiency of the method is illustrated through examples.


2019 ◽  
Vol 25 (15) ◽  
pp. 2143-2150 ◽  
Author(s):  
M Abdelhakem ◽  
H Moussa ◽  
D Baleanu ◽  
M El-Kady

Two schemes to find approximated solutions of optimal control problems of fractional order (FOCPs) are investigated. Integration and differentiation matrices were used in these schemes. These schemes used Chebyshev polynomials in the shifted case as a functional approximation. The target of the presented schemes is to convert such problems to optimization problems (OPs). Numerical examples are included, showing the strength of the schemes.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Sameer Qasim Hasan ◽  
Moataz Abbas Holel

The approximate solution for solving a class of composition fractional order optimal control problems (FOCPs) is suggested and studied in detail. However, the properties of Caputo and Riemann-Liouville derivatives are also given with complete details on Chebyshev approximation function to approximate the solution of fractional differential equation with different approach. Also, the relation between Caputo and Riemann-Liouville of fractional derivative took a big role for simplifying the fractional differential equation that represents the constraints of optimal control problems. The approximate solutions are defined on interval [0,1] and are compared with the exact solution of order one which is an important condition to support the working method. Finally, illustrative examples are included to confirm the efficiency and accuracy of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document