Computing the Rabinowitz Floer homology of tentacular hyperboloids
<p style='text-indent:20px;'>We compute the Rabinowitz Floer homology for a class of non-compact hyperboloids <inline-formula><tex-math id="M1">\begin{document}$ \Sigma\simeq S^{n+k-1}\times\mathbb{R}^{n-k} $\end{document}</tex-math></inline-formula>. Using an embedding of a compact sphere <inline-formula><tex-math id="M2">\begin{document}$ \Sigma_0\simeq S^{2k-1} $\end{document}</tex-math></inline-formula> into the hypersurface <inline-formula><tex-math id="M3">\begin{document}$ \Sigma $\end{document}</tex-math></inline-formula>, we construct a chain map from the Floer complex of <inline-formula><tex-math id="M4">\begin{document}$ \Sigma $\end{document}</tex-math></inline-formula> to the Floer complex of <inline-formula><tex-math id="M5">\begin{document}$ \Sigma_0 $\end{document}</tex-math></inline-formula>. In contrast to the compact case, the Rabinowitz Floer homology groups of <inline-formula><tex-math id="M6">\begin{document}$ \Sigma $\end{document}</tex-math></inline-formula> are both non-zero and not equal to its singular homology. As a consequence, we deduce that the Weinstein Conjecture holds for any strongly tentacular deformation of such a hyperboloid.</p>