Classification of positive solutions to the critical fractional Choquard equation in

2019 ◽  
pp. 1-27
Author(s):  
Huxiao Luo
2021 ◽  
Vol 6 (11) ◽  
pp. 12929-12951
Author(s):  
Xudong Shang ◽  

<abstract><p>In this work, we study the existence, multiplicity and concentration behavior of positive solutions for the following problem involving the fractional $ p $-Laplacian</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \varepsilon^{ps}(-\Delta )^{s}_{p}u + V(x)|u|^{p-2}u = \varepsilon^{\mu-N}(\frac{1}{|x|^{\mu}}\ast K|u|^{q})K(x)|u|^{q-2}u \hskip0.2cm\text{in}\hskip0.1cm \mathbb{R}^{N}, \end{eqnarray*} $\end{document} </tex-math></disp-formula></p> <p>where $ 0 &lt; s &lt; 1 &lt; p &lt; \infty $, $ N &gt; ps $, $ 0 &lt; \mu &lt; ps $, $ p &lt; q &lt; \frac{p^{*}_{s}}{2}(2-\frac{\mu}{N}) $, $ (-\Delta)^{s}_{p} $ is the fractional $ p $-Laplacian and $ \varepsilon &gt; 0 $ is a small parameter. Under certain conditions on $ V $ and $ K $, we prove the existence of a positive ground state solution and express the location of concentration in terms of the potential functions $ V $ and $ K $. In particular, we relate the number of solutions with the topology of the set where $ V $ attains its global minimum and $ K $ attains its global maximum.</p></abstract>


2021 ◽  
Vol 19 (1) ◽  
pp. 259-267
Author(s):  
Liuyang Shao ◽  
Yingmin Wang

Abstract In this study, we consider the following quasilinear Choquard equation with singularity − Δ u + V ( x ) u − u Δ u 2 + λ ( I α ∗ ∣ u ∣ p ) ∣ u ∣ p − 2 u = K ( x ) u − γ , x ∈ R N , u > 0 , x ∈ R N , \left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }^{p-2}u=K\left(x){u}^{-\gamma },\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\\ u\gt 0,\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\end{array}\right. where I α {I}_{\alpha } is a Riesz potential, 0 < α < N 0\lt \alpha \lt N , and N + α N < p < N + α N − 2 \displaystyle \frac{N+\alpha }{N}\lt p\lt \displaystyle \frac{N+\alpha }{N-2} , with λ > 0 \lambda \gt 0 . Under suitable assumption on V V and K K , we research the existence of positive solutions of the equations. Furthermore, we obtain the asymptotic behavior of solutions as λ → 0 \lambda \to 0 .


2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


Sign in / Sign up

Export Citation Format

Share Document