Pythagorean triples and quadratic residues modulo an odd prime
Keyword(s):
<abstract><p>In this article, we use the elementary methods and the estimate for character sums to study a problem related to quadratic residues and the Pythagorean triples, and prove the following result. Let $ p $ be an odd prime large enough. Then for any positive number $ 0 < \epsilon < 1 $, there must exist three quadratic residues $ x, \ y $ and $ z $ modulo $ p $ with $ 1\leq x, \ y, \ z\leq p^{1+\epsilon} $ such that the equation $ x^2+y^2 = z^2 $.</p></abstract>