scholarly journals Torse-forming vector fields on $ m $ -spheres

2021 ◽  
Vol 7 (2) ◽  
pp. 3056-3066
Author(s):  
Amira Ishan ◽  
◽  
Sharief Deshmukh ◽  

<abstract><p>A characterization of an $ m $-sphere $ \mathbf{S}^{m}(a) $ is obtained using a non-trivial torse-forming vector field $ \zeta $ on an $ m $-dimensional Riemannian manifold.</p></abstract>


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2201
Author(s):  
Sharief Deshmukh ◽  
Ibrahim Al-Dayel ◽  
Devaraja Mallesha Naik

A torqued vector field ξ is a torse-forming vector field on a Riemannian manifold that is orthogonal to the dual vector field of the 1-form in the definition of torse-forming vector field. In this paper, we introduce an anti-torqued vector field which is opposite to torqued vector field in the sense it is parallel to the dual vector field to the 1-form in the definition of torse-forming vector fields. It is interesting to note that anti-torqued vector fields do not reduce to concircular vector fields nor to Killing vector fields and thus, give a unique class among the classes of special vector fields on Riemannian manifolds. These vector fields do not exist on compact and simply connected Riemannian manifolds. We use anti-torqued vector fields to find two characterizations of Euclidean spaces. Furthermore, a characterization of an Einstein manifold is obtained using the combination of a torqued vector field and Fischer–Marsden equation. We also find a condition under which the scalar curvature of a compact Riemannian manifold admitting an anti-torqued vector field is strictly negative.



2021 ◽  
Vol 62 ◽  
pp. 53-66
Author(s):  
Fethi Latti ◽  
◽  
Hichem Elhendi ◽  
Lakehal Belarbi

In the present paper, we introduce a new class of natural metrics on the tangent bundle $TM$ of the Riemannian manifold $(M,g)$ denoted by $G^{f,h}$ which is named a twisted Sasakian metric. A necessary and sufficient conditions under which a vector field is harmonic with respect to the twisted Sasakian metric are established. Some examples of harmonic vector fields are presented as well.



2014 ◽  
Vol 25 (11) ◽  
pp. 1450104 ◽  
Author(s):  
Bang-Yen Chen ◽  
Sharief Deshmukh

A Ricci soliton (M, g, v, λ) on a Riemannian manifold (M, g) is said to have concurrent potential field if its potential field v is a concurrent vector field. Ricci solitons arisen from concurrent vector fields on Riemannian manifolds were studied recently in [Ricci solitons and concurrent vector fields, preprint (2014), arXiv:1407.2790]. The most important concurrent vector field is the position vector field on Euclidean submanifolds. In this paper we completely classify Ricci solitons on Euclidean hypersurfaces arisen from the position vector field of the hypersurfaces.



Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1139 ◽  
Author(s):  
Bang-Yen Chen ◽  
Sharief Deshmukh ◽  
Amira A. Ishan

In this article, we study Jacobi-type vector fields on Riemannian manifolds. A Killing vector field is a Jacobi-type vector field while the converse is not true, leading to a natural question of finding conditions under which a Jacobi-type vector field is Killing. In this article, we first prove that every Jacobi-type vector field on a compact Riemannian manifold is Killing. Then, we find several necessary and sufficient conditions for a Jacobi-type vector field to be a Killing vector field on non-compact Riemannian manifolds. Further, we derive some characterizations of Euclidean spaces in terms of Jacobi-type vector fields. Finally, we provide examples of Jacobi-type vector fields on non-compact Riemannian manifolds, which are non-Killing.



Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1941
Author(s):  
Sharief Deshmukh ◽  
Nasser Bin Turki ◽  
Haila Alodan

In this article, we show that the presence of a torqued vector field on a Riemannian manifold can be used to obtain rigidity results for Riemannian manifolds of constant curvature. More precisely, we show that there is no torqued vector field on n-sphere Sn(c). A nontrivial example of torqued vector field is constructed on an open subset of the Euclidean space En whose torqued function and torqued form are nowhere zero. It is shown that owing to topology of the Euclidean space En, this type of torqued vector fields could not be extended globally to En. Finally, we find a necessary and sufficient condition for a torqued vector field on a compact Riemannian manifold to be a concircular vector field.



Author(s):  
Sharief Deshmukh ◽  
Ibrahim Al-Dayel

There are two smooth functions [Formula: see text] and [Formula: see text] associated to a nontrivial concircular vector field [Formula: see text] on a connected Riemannian manifold [Formula: see text], called potential function and connecting function. In this paper, we show that presence of a timelike nontrivial concircular vector field influences the geometry of generalized Robertson–Walker space-times. We use a timelike concircular vector field [Formula: see text] on an [Formula: see text] -dimensional connected conformally flat Lorentzian manifold, [Formula: see text], to find a characterization of generalized Robertson–Walker space-time with  fibers Einstein manifolds. It is interesting to note that for [Formula: see text] the concircular vector field annihilates energy-momentum tensor and also that in this case the potential function [Formula: see text] is harmonic. In the second part of this paper, we show that presence of a nontrivial concircular vector field [Formula: see text] with connecting function [Formula: see text] on a complete and connected [Formula: see text] -dimensional conformally flat Riemannian manifold [Formula: see text], [Formula: see text], with Ricci curvature [Formula: see text] non-negative, satisfying [Formula: see text], is necessary and sufficient for [Formula: see text] to be isometric to either a sphere [Formula: see text] or to the Euclidean space [Formula: see text], where [Formula: see text] is the scalar curvature.



2019 ◽  
Vol 13 (06) ◽  
pp. 2050120
Author(s):  
Debabrata Chakraborty ◽  
Shyamal Kumar Hui ◽  
Yadab Chandra Mandal

The evolution of some geometric quantities on a compact Riemannian manifold [Formula: see text] whose metric is Yamabe soliton is discussed. Using these quantities, lower bound on the soliton constant is obtained. We discuss about commutator of soliton vector fields. Also, the condition of soliton vector field to be a geodesic vector field is obtained.



Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 137 ◽  
Author(s):  
Sharief Deshmukh ◽  
Patrik Peska ◽  
Nasser Bin Turki

A unit geodesic vector field on a Riemannian manifold is a vector field whose integral curves are geodesics, or in other worlds have zero acceleration. A geodesic vector field on a Riemannian manifold is a smooth vector field with acceleration of each of its integral curves is proportional to velocity. In this paper, we show that the presence of a geodesic vector field on a Riemannian manifold influences its geometry. We find characterizations of n-spheres as well as Euclidean spaces using geodesic vector fields.



2008 ◽  
Vol 84 (2) ◽  
pp. 155-162
Author(s):  
FABIANO G. B. BRITO ◽  
PABLO M. CHACÓN

AbstractThe energy of a unit vector field X on a closed Riemannian manifold M is defined as the energy of the section into T1M determined by X. For odd-dimensional spheres, the energy functional has an infimum for each dimension 2k+1 which is not attained by any non-singular vector field for k>1. For k=1, Hopf vector fields are the unique minima. In this paper we show that for any closed Riemannian manifold, the energy of a frame defined on the manifold, possibly except on a finite subset, admits a lower bound in terms of the total scalar curvature of the manifold. In particular, for odd-dimensional spheres this lower bound is attained by a family of frames defined on the sphere minus one point and consisting of vector fields parallel along geodesics.



2009 ◽  
Vol 19 (06) ◽  
pp. 2115-2121 ◽  
Author(s):  
YIRONG LIU ◽  
JIBIN LI

This paper proves that a Z5-equivariant planar polynomial vector field of degree 5 has at least five symmetric centers, if and only if it is a Hamltonian vector field. The characterization of a center problem is completely solved. The shortened expressions of the first four Lyapunov constants are given. Under small Z5-equivariant perturbations, the conclusion that the perturbed system has at least 25 limit cycles with the scheme 〈5 ∐ 5 ∐ 5 ∐ 5 ∐ 5〉 is rigorously proved.



Sign in / Sign up

Export Citation Format

Share Document