scholarly journals ENERGY OF GLOBAL FRAMES

2008 ◽  
Vol 84 (2) ◽  
pp. 155-162
Author(s):  
FABIANO G. B. BRITO ◽  
PABLO M. CHACÓN

AbstractThe energy of a unit vector field X on a closed Riemannian manifold M is defined as the energy of the section into T1M determined by X. For odd-dimensional spheres, the energy functional has an infimum for each dimension 2k+1 which is not attained by any non-singular vector field for k>1. For k=1, Hopf vector fields are the unique minima. In this paper we show that for any closed Riemannian manifold, the energy of a frame defined on the manifold, possibly except on a finite subset, admits a lower bound in terms of the total scalar curvature of the manifold. In particular, for odd-dimensional spheres this lower bound is attained by a family of frames defined on the sphere minus one point and consisting of vector fields parallel along geodesics.

2019 ◽  
Vol 13 (06) ◽  
pp. 2050120
Author(s):  
Debabrata Chakraborty ◽  
Shyamal Kumar Hui ◽  
Yadab Chandra Mandal

The evolution of some geometric quantities on a compact Riemannian manifold [Formula: see text] whose metric is Yamabe soliton is discussed. Using these quantities, lower bound on the soliton constant is obtained. We discuss about commutator of soliton vector fields. Also, the condition of soliton vector field to be a geodesic vector field is obtained.


2021 ◽  
Vol 62 ◽  
pp. 53-66
Author(s):  
Fethi Latti ◽  
◽  
Hichem Elhendi ◽  
Lakehal Belarbi

In the present paper, we introduce a new class of natural metrics on the tangent bundle $TM$ of the Riemannian manifold $(M,g)$ denoted by $G^{f,h}$ which is named a twisted Sasakian metric. A necessary and sufficient conditions under which a vector field is harmonic with respect to the twisted Sasakian metric are established. Some examples of harmonic vector fields are presented as well.


2018 ◽  
Vol 18 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Ju Tan ◽  
Shaoqiang Deng

AbstractIn this paper, we consider a special class of solvable Lie groups such that for any x, y in their Lie algebras, [x, y] is a linear combination of x and y. We investigate the harmonicity properties of invariant vector fields of this kind of Lorentzian Lie groups. It is shown that any invariant unit time-like vector field is spatially harmonic. Moreover, we determine all vector fields which are critical points of the energy functional restricted to the space of smooth vector fields.


2014 ◽  
Vol 25 (11) ◽  
pp. 1450104 ◽  
Author(s):  
Bang-Yen Chen ◽  
Sharief Deshmukh

A Ricci soliton (M, g, v, λ) on a Riemannian manifold (M, g) is said to have concurrent potential field if its potential field v is a concurrent vector field. Ricci solitons arisen from concurrent vector fields on Riemannian manifolds were studied recently in [Ricci solitons and concurrent vector fields, preprint (2014), arXiv:1407.2790]. The most important concurrent vector field is the position vector field on Euclidean submanifolds. In this paper we completely classify Ricci solitons on Euclidean hypersurfaces arisen from the position vector field of the hypersurfaces.


2003 ◽  
Vol 133 (6) ◽  
pp. 1209-1229 ◽  
Author(s):  
J. Berndt ◽  
E. Boeckx ◽  
P. T. Nagy ◽  
L. Vanhecke

A geodesic γ on the unit tangent sphere bundle T1M of a Riemannian manifold (M, g), equipped with the Sasaki metric gS, can be considered as a curve x on M together with a unit vector field V along it. We study the curves x. In particular, we investigate for which manifolds (M, g) all these curves have constant first curvature κ1 or have vanishing curvature κi for some i = 1, 2 or 3.


2021 ◽  
Vol 39 (2) ◽  
pp. 105-120
Author(s):  
Talat Körpınar ◽  
Ridvan Cem Demirkol

In this paper, we firstly introduce kinematics properties of a moving particle lying in Minkowski space E₂⁴. We assume that particles corresponds to different type of space curves such that they are characterized by Frenet frame equations. Guided by these, we present geometrical understanding of an energy and pseudo angle on the particle in each Frenet vector fields depending on the particle corresponds to a spacelike, timelike or lightlike curve in E₂⁴. Then we also determine the bending elastic energy functional for the same particle in E₂⁴ by assuming the particle has a bending feature of elastica. Finally, we prove that bending energy formula can be represented by the energy on the particle in each Frenet vector field.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1139 ◽  
Author(s):  
Bang-Yen Chen ◽  
Sharief Deshmukh ◽  
Amira A. Ishan

In this article, we study Jacobi-type vector fields on Riemannian manifolds. A Killing vector field is a Jacobi-type vector field while the converse is not true, leading to a natural question of finding conditions under which a Jacobi-type vector field is Killing. In this article, we first prove that every Jacobi-type vector field on a compact Riemannian manifold is Killing. Then, we find several necessary and sufficient conditions for a Jacobi-type vector field to be a Killing vector field on non-compact Riemannian manifolds. Further, we derive some characterizations of Euclidean spaces in terms of Jacobi-type vector fields. Finally, we provide examples of Jacobi-type vector fields on non-compact Riemannian manifolds, which are non-Killing.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1941
Author(s):  
Sharief Deshmukh ◽  
Nasser Bin Turki ◽  
Haila Alodan

In this article, we show that the presence of a torqued vector field on a Riemannian manifold can be used to obtain rigidity results for Riemannian manifolds of constant curvature. More precisely, we show that there is no torqued vector field on n-sphere Sn(c). A nontrivial example of torqued vector field is constructed on an open subset of the Euclidean space En whose torqued function and torqued form are nowhere zero. It is shown that owing to topology of the Euclidean space En, this type of torqued vector fields could not be extended globally to En. Finally, we find a necessary and sufficient condition for a torqued vector field on a compact Riemannian manifold to be a concircular vector field.


Author(s):  
P. A. Shaikhullina ◽  

There are consider the problem of constructing an analytical classification holomorphic resonance maps germs of Siegel-type in dimension 2. Namely, semi-hyperbolic maps of general form: such maps have one parabolic multiplier (equal to one), and the other hyperbolic (not equal in modulus to zero or one). In this paper, the first stage of constructing an analytical classification by the method of functional invariants is carried out: a theorem on the reducibility of a germ to its formal normal form by "semiformal" changes of coordinates is proved. The one-time shift along the saddle node vector field (the formal normal form in the problem of the analytical classification of saddle-node vector fields on a plane) is chosen as the formal normal form.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 997
Author(s):  
Rejeb Hadiji ◽  
Carmen Perugia

In this paper, we study the asymptotic behavior of minimizing solutions of a Ginzburg–Landau type functional with a positive weight and with convex potential near 0 and we estimate the energy in this case. We also generalize a lower bound for the energy of unit vector field given initially by Brezis–Merle–Rivière.


Sign in / Sign up

Export Citation Format

Share Document