scholarly journals Traveling wave solutions to a neural field model with oscillatory synaptic coupling types

2019 ◽  
Vol 16 (2) ◽  
pp. 727-758 ◽  
Author(s):  
Alan Dyson ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Georgios Detorakis ◽  
Antoine Chaillet ◽  
Nicolas P. Rougier

AbstractWe provide theoretical conditions guaranteeing that a self-organizing map efficiently develops representations of the input space. The study relies on a neural field model of spatiotemporal activity in area 3b of the primary somatosensory cortex. We rely on Lyapunov’s theory for neural fields to derive theoretical conditions for stability. We verify the theoretical conditions by numerical experiments. The analysis highlights the key role played by the balance between excitation and inhibition of lateral synaptic coupling and the strength of synaptic gains in the formation and maintenance of self-organizing maps.


2016 ◽  
Vol 26 (10) ◽  
pp. 1919-1954 ◽  
Author(s):  
Jian Fang ◽  
Grégory Faye

We study the existence of traveling wave solutions and spreading properties for single-layer delayed neural field equations. We focus on the case where the kinetic dynamics are of monostable type and characterize the invasion speeds as a function of the asymptotic decay of the connectivity kernel. More precisely, we show that for exponentially bounded kernels the minimal speed of traveling waves exists and coincides with the spreading speed, which further can be explicitly characterized under a KPP type condition. We also investigate the case of algebraically decaying kernels where we prove the non-existence of traveling wave solutions and show the level sets of the solutions eventually locate in-between two exponential functions of time. The uniqueness of traveling waves modulo translation is also obtained.


2013 ◽  
Author(s):  
V. M. Vassilev ◽  
P. A. Djondjorov ◽  
M. Ts. Hadzhilazova ◽  
I. M. Mladenov

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 224
Author(s):  
Ghaylen Laouini ◽  
Amr M. Amin ◽  
Mohamed Moustafa

A comprehensive study of the negative-order Kadomtsev–Petviashvili (nKP) partial differential equation by Lie group method has been presented. Initially the infinitesimal generators and symmetry reduction, which were obtained by applying the Lie group method on the negative-order Kadomtsev–Petviashvili equation, have been used for constructing the reduced equations. In particular, the traveling wave solutions for the negative-order KP equation have been derived from the reduced equations as an invariant solution. Finally, the extended improved (G′/G) method and the extended tanh method are described and applied in constructing new explicit expressions for the traveling wave solutions. Many new and more general exact solutions are obtained.


Sign in / Sign up

Export Citation Format

Share Document