scholarly journals MARnet: multi-scale adaptive residual neural network for chest X-ray images recognition of lung diseases

2021 ◽  
Vol 19 (1) ◽  
pp. 331-350
Author(s):  
Boyang Wang ◽  
◽  
Wenyu Zhang

<abstract> <p>Chest X-ray image is an important clinical diagnostic reference to lung diseases that is a serious threat to human health. At present, with the rapid development of computer vision and deep learning technology, many scholars have carried out the fruitful research on how to build a valid model for chest X-ray images recognition of lung diseases. While some efforts are still expected to improve the performance of the recognition model and enhance the interpretability of the recognition results. In this paper, we construct a multi-scale adaptive residual neural network (MARnet) to identify chest X-ray images of lung diseases. To make the model better extract image features, we cross-transfer the information extracted by residual block and the information extracted by adaptive structure to different layer, avoiding the reduction effect of residual structure on adaptive function. We compare MARnet with some classical neural networks, and the results show that MARnet achieves accuracy (ACC) of 83.3% and the area under ROC curve (AUC) of 0.97 in the identification of 4 kinds of typical lung X-ray images including nodules, atelectasis, normal and infection, which are higher than those of other methods. Moreover, to avoid the randomness of the train-test-split method, 5-fold cross-validation method is used to verify the generalization ability of the MARnet model and the results are satisfactory. Finally, the technique called Gradient-weighted Class Activation Mapping (Grad-CAM), is adopted to display significantly the discriminative regions of the images in the form of the heat map, which provides an explainable and more direct clinical diagnostic reference to lung diseases.</p> </abstract>

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1512
Author(s):  
Dejun Zhang ◽  
Fuquan Ren ◽  
Yushuang Li ◽  
Lei Na ◽  
Yue Ma

Pneumonia has caused significant deaths worldwide, and it is a challenging task to detect many lung diseases such as like atelectasis, cardiomegaly, lung cancer, etc., often due to limited professional radiologists in hospital settings. In this paper, we develop a straightforward VGG-based model architecture with fewer layers. In addition, to tackle the inadequate contrast of chest X-ray images, which brings about ambiguous diagnosis, the Dynamic Histogram Enhancement technique is used to pre-process the images. The parameters of our model are reduced by 97.51% compared to VGG-16, 85.86% compared to Res-50, 83.94% compared to Xception, 51.92% compared to DenseNet121, but increased MobileNet by 4%. However, the proposed model’s performance (accuracy: 96.068%, AUC: 0.99107 with a 95% confidence interval of [0.984, 0.996], precision: 94.408%, recall: 90.823%, F1 score: 92.851%) is superior to the models mentioned above (VGG-16: accuracy, 94.359%, AUC: 0.98928; Res-50: accuracy, 92.821%, AUC, 0.98780; Xception: accuracy, 96.068%, AUC, 0.99623; DenseNet121: accuracy, 87.350%, AUC, 0.99347; MobileNet: accuracy, 95.473%, AUC, 0.99531). The original Pneumonia Classification Dataset in Kaggle is split into three sub-sets, training, validation and test sets randomly at ratios of 70%, 10% and 20%. The model’s performance in pneumonia detection shows that the proposed VGG-based model could effectively classify normal and abnormal X-rays in practice, hence reducing the burden of radiologists.


Author(s):  
Soumya Ranjan Nayak ◽  
Janmenjoy Nayak ◽  
Utkarsh Sinha ◽  
Vaibhav Arora ◽  
Uttam Ghosh ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 319
Author(s):  
Yi Wang ◽  
Xiao Song ◽  
Guanghong Gong ◽  
Ni Li

Due to the rapid development of deep learning and artificial intelligence techniques, denoising via neural networks has drawn great attention due to their flexibility and excellent performances. However, for most convolutional network denoising methods, the convolution kernel is only one layer deep, and features of distinct scales are neglected. Moreover, in the convolution operation, all channels are treated equally; the relationships of channels are not considered. In this paper, we propose a multi-scale feature extraction-based normalized attention neural network (MFENANN) for image denoising. In MFENANN, we define a multi-scale feature extraction block to extract and combine features at distinct scales of the noisy image. In addition, we propose a normalized attention network (NAN) to learn the relationships between channels, which smooths the optimization landscape and speeds up the convergence process for training an attention model. Moreover, we introduce the NAN to convolutional network denoising, in which each channel gets gain; channels can play different roles in the subsequent convolution. To testify the effectiveness of the proposed MFENANN, we used both grayscale and color image sets whose noise levels ranged from 0 to 75 to do the experiments. The experimental results show that compared with some state-of-the-art denoising methods, the restored images of MFENANN have larger peak signal-to-noise ratios (PSNR) and structural similarity index measure (SSIM) values and get better overall appearance.


Sign in / Sign up

Export Citation Format

Share Document