scholarly journals Coefficient identification and fault detection in linear elastic systems; one dimensional problems

2011 ◽  
Vol 1 (3) ◽  
pp. 391-411 ◽  
Author(s):  
David L. Russell ◽  
2021 ◽  
pp. 107754632110458
Author(s):  
Hamze Mousavi ◽  
Moein Mirzaei ◽  
Samira Jalilvand

The present work investigates the vibrational properties of a DNA-like structure by means of a harmonic Hamiltonian and the Green’s function formalism. The DNA sequence is considered as a quasi one-dimensional system in which the mass-spring pairs are randomly distributed inside each crystalline unit. The sizes of the units inside the system are increased, in a step-by-step approach, so that the actual condition of the DNA could be modeled more accurately. The linear-elastic forces mimicking the bonds between the pairs are initially considered constant along the entire length of the system. In the next step, these forces are randomly shuffled so as to take into account the inherent randomness of the DNA. The results reveal that increasing the number of mass-spring pairs in the crystalline structure decreases the influence of randomness on the mechanical behavior of the structure. This also holds true for systems with larger crystalline units. The obtained results can be used to investigate the mechanical behavior of similar macro-systems.


2004 ◽  
Vol 10 (11) ◽  
pp. 1699-1735 ◽  
Author(s):  
A. G. Kelkar ◽  
S. M. Joshi

In this paper we present a controller synthesis approach for elastic systems based on the mathematical concept of passivity. For nonlinear and linear elastic systems that are inherently passive, robust control laws are presented that guarantee stability. Examples of such systems include flexible structures with col-located and compatible actuators and sensors, and multibody space-based robotic manipulators. For linear elastic systems that are not inherently passive, methods are presented for rendering them passive by compensation. The “passified” systems can then be robustly controlled by a class of passive linear controllers that guarantee stability despite uncertainties and inaccuracies in the mathematical models. The controller synthesis approach is demonstrated by application to five different types of elastic systems.


2012 ◽  
Vol 407 (11) ◽  
pp. 1725-1733 ◽  
Author(s):  
E. Agoritsas ◽  
V. Lecomte ◽  
T. Giamarchi

1964 ◽  
Vol 31 (3) ◽  
pp. 435-440 ◽  
Author(s):  
G. Herrmann ◽  
R. W. Bungay

Free motions of a linear elastic, nondissipative, two-degree-of-freedom system, subjected to a static nonconservative loading, are analyzed with the aim of studying the connection between the two instability mechanisms (termed divergence and flutter by analogy to aeroelastic phenomena) known to be possible for such systems. An independent parameter is introduced to reflect the ratio of the conservative and nonconservative components of the loading. Depending on the value of this parameter, instability is found to occur for compressive loadings by divergence (static buckling), flutter, or by both (at different loads) with multiple stable and unstable ranges of the load. In the latter case either type of instability may be the first to occur with increasing load. For a range of the parameter, divergence (only) is found to occur for tensile loads. Regardless of the non-conservativeness of the system, the critical loads for divergence can always be determined by the (static) Euler method. The critical loads for flutter (occurring only in nonconservative systems) can be determined, of course, by the kinetic method alone.


1969 ◽  
Vol 91 (1) ◽  
pp. 95-102 ◽  
Author(s):  
J. L. Campbell ◽  
T. Yang

An analytical study is presented for one-dimensional, pulsatile flow of an incompressible fluid in systems of elastic tubing. Nonlinear terms are retained in the system of describing equations. Three experimental test systems with characteristics similar in some respects to those of the human cardiovascular system are described. These systems were used for experimental verification of the analytical predictions. Comparisons of the analytical predictions and experimental results show that pressures, mass flow rates, and velocities can be predicted with reasonable accuracy for all test conditions employed on the three models.


Sign in / Sign up

Export Citation Format

Share Document