scholarly journals Study of the mechanism of supporting cells repairing the organ of corti in terms of cell kinetics. Nuclear DNA synthesis of supporting cell of the organ of Corti in the cochlea damaged by nitromin administration.

1991 ◽  
Vol 94 (3) ◽  
pp. 386-395 ◽  
Author(s):  
MASATAKA MURAKAMI
Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1266 ◽  
Author(s):  
Eszter Berekméri ◽  
Ádám Fekete ◽  
László Köles ◽  
Tibor Zelles

Exploring the development of the hearing organ helps in the understanding of hearing and hearing impairments and it promotes the development of the regenerative approaches-based therapeutic efforts. The role of supporting cells in the development of the organ of Corti is much less elucidated than that of the cochlear sensory receptor cells. The use of our recently published method of single-cell electroporation loading of a fluorescent Ca2+ probe in the mouse hemicochlea preparation provided an appropriate means to investigate the Deiters’ cells at the subcellular level in two different cochlear turns (apical, middle). Deiters’ cell’s soma and process elongated, and the process became slimmer by maturation without tonotopic preference. The tonotopically heterogeneous spontaneous Ca2+ activity less frequently occurred by maturation and implied subcellular difference. The exogenous ATP- and UTP-evoked Ca2+ responses were maturation-dependent and showed P2Y receptor dominance in the apical turn. By monitoring the basic structural dimensions of this supporting cell type as well as its spontaneous and evoked purinergic Ca2+ signaling in the hemicochlea preparation in different stages in the critical postnatal P5-25 developmental period for the first time, we showed that the soma and the phalangeal process of the Deiters’ cells go through age- and tonotopy-dependent changes in the morphometric parameters and purinergic signaling.


2018 ◽  
Author(s):  
Lu M. Yang ◽  
Kathryn S.E. Cheah ◽  
Sung-Ho Huh ◽  
David M. Ornitz

AbstractThe mouse organ of Corti develops in two steps: progenitor specification and differentiation. Fibroblast Growth Factor (FGF) signaling is important in this developmental pathway, as deletion of FGF receptor 1 (Fgfr1) or its ligand, Fgf20, leads to the loss of hair cells and supporting cells from the organ of Corti. However, whether FGF20-FGFR1 signaling is required during specification or differentiation, and how it interacts with the transcription factor Sox2, also important for hair cell and supporting cell development, has been a topic of debate. Here, we show that while FGF20-FGFR1 signaling functions during progenitor differentiation, FGFR1 has an FGF20-independent, Sox2-dependent role in specification. We also show that a combination of reduction in Sox2 expression and Fgf20 deletion recapitulates the Fgfr1-deletion phenotype. Furthermore, we uncovered a strong genetic interaction between Sox2 and Fgf20, especially in regulating the development of hair cells and supporting cells towards the basal end and the outer compartment of the organ of Corti. To explain this genetic interaction and its effects on the basal end of the organ of Corti, we provide evidence that decreased Sox2 expression delays specification, which begins at the organ of Corti apex, while Fgf20-deletion results in premature onset of differentiation, which begins near the organ of Corti base. Thereby, Sox2 and Fgf20 interact to ensure that specification occurs before differentiation towards the cochlear base. These findings reveal an intricate developmental program regulating organ of Corti development along the basal-apical axis of the cochlea.Author summaryThe mammalian cochlea contains the organ of Corti, a specialized sensory epithelium populated by hair cells and supporting cells that detect sound. Hair cells are susceptible to injury by noise, toxins, and other insults. In mammals, hair cells cannot be regenerated after injury, resulting in permanent hearing loss. Understanding genetic pathways that regulate hair cell development in the mammalian organ of Corti will help in developing methods to regenerate hair cells to treat hearing loss. Many genes are essential for hair cell and supporting cell development in the mouse organ of Corti. Among these are Sox2, Fgfr1, and Fgf20. Here, we investigate the relationship between these three genes to further define their roles in development.Interestingly, we found that Sox2 and Fgf20 interact to affect hair cell and supporting cell development in a spatially-graded manner. We found that cells toward the outer compartment and the base of the organ of Corti are more strongly affected by the loss of Sox2 and Fgf20. We provide evidence that this spatially-graded effect can be partially explained by the roles of the two genes in the precise timing of two sequential stages of organ of Corti development, specification and differentation.


2020 ◽  
Author(s):  
Victoria Lukashkina ◽  
Snezana Levic ◽  
Patricio Simões ◽  
Zhenhang Xu ◽  
Joseph DiGuiseppi ◽  
...  

Abstract We used optogenetics to investigate the control of auditory sensitivity by cochlear supporting cells that scaffold outer hair cells, which transduce and amplify cochlear responses to sound. In vivo and in vitro measurements of sound-induced cochlear mechanical and electrical responses were made from mice that conditionally expressed nonselective cationic channelrhodopsins in Deiters’ and outer pillar supporting cells in the organ of Corti. We demonstrated that cochlear light-stimulation and subsequent activation of channelrhodopsins depolarized the supporting cells, changed their extracellular electrical environment, and sensitized insensitive and desensitized sensitive cochlear responses to sound. We concluded that outer hair cells, Deiters’ cells and outer pillar cells interact through feedback which regulates their immediate ionic and electrical environment and controls energy flow in the mammalian cochlea to optimize its performance over its entire dynamic range. Activation of the supporting cell channelrhodopsins shunts this feedback system and restores cochlear sensitivity to a set level.


1978 ◽  
Vol 173 (1) ◽  
pp. 309-314 ◽  
Author(s):  
T R Butt ◽  
W M Wood ◽  
E L McKay ◽  
R L P Adams

The effects on DNA synthesis in vitro in mouse L929-cell nuclei of differential extraction of DNA polymerases alpha and beta were studied. Removal of all measurable DNA polymerase alpha and 20% of DNA polymerase beta leads to a 40% fall in the replicative DNA synthesis. Removal of 70% of DNA polymerase beta inhibits replicative synthesis by 80%. In all cases the nuclear DNA synthesis is sensitive to N-ethylmaleimide and aCTP (arabinosylcytosine triphosphate), though less so than DNA polymerase alpha. Addition of deoxyribonuclease I to the nuclear incubation leads to synthesis of high-molecular-weight DNA in a repair reaction. This occurs equally in nuclei from non-growing or S-phase cells. The former nuclei lack DNA polymerase alpha and the reaction reflects the sensitivity of DNA polymerase beta to inhibiton by N-ethylmaleimide and aCTP.


1977 ◽  
Vol 27 (1) ◽  
pp. 81-90
Author(s):  
S.A. Filfilan ◽  
D.C. Sigee

The uptake of tritiated thymine into cells of a heterogeneous population of Prorocentrum micans was investigated using light-microscope and electron-microscope autoradiography. Specificity of thymine uptake into DNA was demonstrated by the specific removal of label from wax-embedded material using DNase and by the high degree of localization of nuclear label to chromosomes in the electron-microscope autoradiographs. All nuclei, including both dividing and non-dividing cells, showed a substantial uptake of label, indicating that nuclear DNA synthesis in Prorocentrum micans is a continuous process. The level of DNA synthesis does show considerable variation, however, with very high levels in some interphase nuclei. The continuous replication of nuclear DNA provides further evidence of dinoflagellate affinity to the prokaryotes, and indicates that Prorocentrum micans is a very primitive eukaryote cell.


1975 ◽  
Vol 64 (1) ◽  
pp. 211-222 ◽  
Author(s):  
M L Meistrich ◽  
B O Reid ◽  
W J Barcellona

The incorporation of radioactivity into various cells in the sequence of spermatogenesis was measured by preparing highly purified spermatozoan nuclei from the cauda epididymidis of mice at daily intervals after injection of (3H)thymidine. The stages of differentiation of these sperm at the time of thymidine administration were calculated from the kinetics of spermatogenesis. The procedure for purification of sperm nuclei included sonication, mechanical shearing, and treatment with trypsin, DNase, Triton X-100, 2M NaC1, and sodium dodecyl sulfate. DNA was isolated from these nuclei by treatment with dithiothreitol and pronase, followed by phenol extraction and ethanol precipitation. The levels of radioactivity in the epididymal sperm head preparations were low (less than 13 dpm/mouse) for 27 days after injection, and then rose dramatically to over 4 times 104 dpm/mouse. Further experiments demonstrated that the 11 dpm of 3H radioactivity contained in sperm heads at 21 or 26 days after injection of (3H)TdR was significantly above background and contamination levels from other cells or other sources. Most of the radioactivity was in the sperm DNA and represented incorporation of tritium from (3H)TdR into the nuclear DNA of meiotic cells at 0.002 percent of the rate of incorporation into S-phase cells. Little, if any, (3H)TdR was incorporation into the DNA of spermatids. The levels of DNA synthesis during the meiotic prophase in the mouse appear to be much lower than those reported for other organisms.


1981 ◽  
Vol 89 (4) ◽  
pp. 638-645 ◽  
Author(s):  
Scott A. Estrem ◽  
Richard W. Babin ◽  
Jai H. Ryu ◽  
Kenneth C. Moore

Cochleas from 12 guinea pigs were evaluated using light, scanning, and transmission electron microscopy after systemic administration of cis-diamminedichloroplatinum (cis-DDP). Administration of cis-DDP resulted in loss of the Preyer reflex and degeneration of outer hair cells (OHC) with increased dose. The OHC degeneration was most pronounced in the basal turns of the cochlea with greatest severity in the inner row. Ultrastructural evidence of OHC degeneration included dilatation of the parietal membranes, softening of the cuticular plate, increased vacuolization and increased numbers of lysosome-like bodies in the apical portion of the cell. Supporting cells appeared more sensitive than OHC. Alteration of supporting cell ultrastructure preceded detectable change in OHC. Injury to the supporting cells was noted with intracellular vesiculation and increased autophagocytosis.


2019 ◽  
Author(s):  
Jingyuan Zhang ◽  
Daxiang Na ◽  
Miriam Dilts ◽  
Kenneth S. Henry ◽  
Patricia M. White

AbstractNoise induced hearing loss (NIHL) affects over ten million adults in the United States, and there is no biological treatment to restore endogenous function after damage. We hypothesized that activation of signaling from ERBB2 receptors in cochlear supporting cells could mitigate NIHL damage. We used the Tet-On genetic expression system to drive a constitutively active variant of ERBB2 (CA-ERBB2) in cochlear supporting cells three days after permanent noise damage in young adult mice. Hearing thresholds were assessed with auditory brainstem response tests prior to noise damage, and hearing recovery was assessed over a three month period. We evaluated supporting cell proliferation, inner and outer hair cell (IHC and OHC) survival, synaptic preservation, and IHC cytoskeletal alterations with histological techniques. Mice harboring CA-ERBB2 capability had similar hearing thresholds to control littermates prior to and immediately after noise exposure, and incurred similar levels of permanent hearing loss. Two and three months after noise exposure, CA-ERBB2+ mice demonstrated a partial but significant reversal of NIHL threshold shifts at the lowest frequency tested, out of five frequencies (n=19 total mice, p=0.0015, ANOVA). We also observed improved IHC and OHC survival (n=7 total cochleae, p=5 × 10−5, Kruskal-Wallis rank sum test). There was no evidence for sustained supporting cell proliferation. Some mortality was associated with doxycycline and furosemide treatments to induce the Tet-ON system. These data suggest that ERBB2 signaling in supporting cells promotes HC repair and some functional recovery. Funded by NIH R01 DC014261, and grants from the Schmitt Foundation and UR Ventures.


1989 ◽  
Vol 217 (1) ◽  
pp. 25-32 ◽  
Author(s):  
David L Hurley ◽  
Andrea M Skantarz ◽  
Reginald A Deering

Sign in / Sign up

Export Citation Format

Share Document