scholarly journals Optical remote sensing of water quality in the Wadden Sea

2019 ◽  
Author(s):  
B. Arabi
2020 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Nagur Cherukuru ◽  
Patrick Martin ◽  
Nivedita Sanwlani ◽  
Aazani Mujahid ◽  
Moritz Müller

Coastal water quality degradation is a global challenge. Marine pollution due to suspended sediments and dissolved matter impacts water colour, biogeochemistry, benthic habitats and eventually human populations that depend on marine resources. In Sarawak (Malaysian Borneo), peatland-draining river discharges containing suspended sediments and dissolved organic carbon influence coastal water quality at multiple locations along the coast. Optical remote sensing is an effective tool to monitor coastal waters over large areas and across remote geographic locations. However, the lack of regional optical measurements and inversion models limits the use of remote sensing observations for water quality monitoring in Sarawak. To overcome this limitation, we have (1) compiled a regional spectral optical library for Sarawak coastal waters, (2) developed a new semi-analytical remote sensing model to estimate suspended sediment and dissolved organic carbon in coastal waters, and (3) demonstrated the application of our remote sensing inversion model on satellite data over Sarawak. Bio-optical data analysis revealed that there is a clear spatial variability in the inherent optical properties of particulate and dissolved matter in Sarawak. Our optical inversion model coupled with the Sarawak spectral optical library performed well in retrieving suspended sediment (bias = 3% and MAE = 5%) and dissolved organic carbon (bias = 3% and MAE = 8%) concentrations. Demonstration products using MODIS Aqua data clearly showed the influence of large rivers such as the Rajang and Lupar in discharging suspended sediments and dissolved organic carbon into coastal waters. The bio-optical parameterisation, optical model, and remote sensing inversion approach detailed here can now help improve monitoring and management of coastal water quality in Sarawak.


2019 ◽  
Vol 11 (17) ◽  
pp. 2068 ◽  
Author(s):  
Junfeng Xiong ◽  
Chen Lin ◽  
Ronghua Ma ◽  
Zhigang Cao

Phosphorus (P) is an important substance for the growth of phytoplankton and an efficient index to assess the water quality. However, estimation of the TP concentration in waters by remote sensing must be associated with optical substances such as the chlorophyll-a (Chla) and the suspended particulate matter (SPM). Based on the good correlation between the suspended inorganic matter (SPIM) and P in Lake Hongze, we used the direct and indirect derivation methods to develop algorithms for the total phosphorus (TP) estimation with the MODIS/Aqua data. Results demonstrate that the direct derivation algorithm based on 645 nm and 1240 nm of the MODIS/Aqua performs a satisfied accuracy (R2 = 0.75, RMSE = 0.029mg/L, MRE = 39% for the training dataset, R2 = 0.68, RMSE = 0.033mg/L, MRE = 47% for the validate dataset), which is better than that of the indirect derivation algorithm. The 645 nm and 1240 nm of MODIS are the main characteristic band of the SPM, so that algorithm can effectively reflect the P variations in Lake Hongze. Additionally, the ratio of the TP to the SPM is positively correlated with the accuracy of the algorithm as well. The proportion of the SPIM in the SPM has a complex effect on the accuracy of the algorithm. When the SPIM accounts for 78%, the algorithm achieves the highest accuracy. Furthermore, the performance of this direct derivation algorithm was examined in two inland lakes in China (Lake Nanyi and Lake Chaohu), it derived the expected P distribution in Lake Nanyi whereas the algorithm failed in Lake Chaohu. Different water properties influence significantly the accuracy of this direct derivation algorithm, while the TP, Chla, and suspended particular inorganic matter (SPOM) of Lake Chaohu are much higher than those of the other two lakes, thus it is difficult to estimate the TP concentration by a simple band combination in Lake Chaohu. Although the algorithm depends on the dataset used in the development, it usually presents a good estimation for those waters where the SPIM dominated, especially when the SPIM accounts for 60% to 80% of the SPM. This research proposed a direct derivation algorithm for the TP estimation for the turbid lake and will provide a theoretical and practical reference for extending the optical remote sensing application and the TP empirical algorithm of Lake Hongze’s help for the local government management water quality.


2021 ◽  
Vol 13 (9) ◽  
pp. 1729
Author(s):  
Yelong Zhao ◽  
Shenglei Wang ◽  
Fangfang Zhang ◽  
Qian Shen ◽  
Junsheng Li ◽  
...  

The Forel-Ule Index (FUI) is an important parameter that can be calculated from optical remote sensing data to assess water quality based on water colour. Using Sentinel-2 images from April to November within the 2016–2020 period coupled with the Google Earth Engine Platform, we calculated FUI to analyse the spatial distribution, seasonal variations, and inter-annual variations of water colour in Baiyangdian Lake in the Xiong’an New Area established on 1 April 2017. The lake was divided into seven sub-regions, A–G; subsequently, high and low FUI values were observed in the south and north, respectively. Additionally, the mean FUI values of G and F zones in the south were 11.9 and 12.7, respectively, whereas those for the A, B, C, D, and E zones in the north were 10.5, 9.8, 10.4, 11.1, 11.2, respectively. The seasonal variations in the Baiyangdian Lake and seven sub-regions were consistent, with turbid water in spring and autumn, and clear water in summer. Inter-annual variations analyses for 2016–2020 indicated that the zone of A became progressively turbid, whereas the B, C, D, E, F, and G zones exhibited slow and gradually decreasing trends. Our findings suggest that the overall water quality of Baiyangdian Lake may be better, which may be related to the governance policies of the region.


Author(s):  
H. Lilienthal ◽  
A. Brauer ◽  
K. Betteridge ◽  
E. Schnug

Conversion of native vegetation into farmed grassland in the Lake Taupo catchment commenced in the late 1950s. The lake's iconic value is being threatened by the slow decline in lake water quality that has become apparent since the 1970s. Keywords: satellite remote sensing, nitrate leaching, land use change, livestock farming, land management


Sign in / Sign up

Export Citation Format

Share Document