scholarly journals Recreational Carrying Capacity of Lake Umbagog National Wildlife Refuge

2010 ◽  
Vol 1 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Robert Manning ◽  
William Valliere ◽  
Jeffrey Hallo

Abstract Recreational carrying capacity addresses the issue of how much and what types of recreation can be accommodated in parks and related areas without unacceptable impacts. Contemporary approaches to carrying capacity rely on formulation, monitoring, and management of indicators and standards of quality. Recreational carrying capacity of Lake Umbagog National Wildlife Refuge, located in northern New Hampshire and Maine, was analyzed using visitor surveys that employed normative theory and methods and visual simulations of a range of recreation-related conditions. Study findings suggest that indicators of quality for the visitor experience include the number of boats seen on Lake Umbagog and associated rivers, the size of boating groups, the minimum acceptable chance of seeing selected types of wildlife, and the minimum acceptable chance of catching selected types of fish. Study findings also suggest a range of standards of quality for these indicators. Recreational carrying capacity of Lake Umbagog National Wildlife Refuge can be managed by using study findings to guide formulation of indicators and standards of quality, monitoring indicator variables, and taking management actions to ensure that standards of quality are maintained.

2017 ◽  
Vol 8 (1) ◽  
pp. 209-218
Author(s):  
Kevin M. Ringelman ◽  
Christopher K. Williams ◽  
Paul M. Castelli ◽  
Mason L. Sieges ◽  
Rebecca A. Longenecker ◽  
...  

Abstract The management of wintering North American waterfowl is based on the premise that the amount of foraging habitat can limit populations. To estimate carrying capacity of winter habitats, managers use bioenergetic models to quantify energy (food) availability and energy demand, and use results as planning tools to meet regional conservation objectives. Regional models provide only coarse estimates of carrying capacity because habitat area, habitat energy values, and temporal trends in population-level demand are difficult to quantify precisely at large scales. We took advantage of detailed data previously collected on wintering waterfowl at Edwin B. Forsythe National Wildlife Refuge and surrounding marsh, New Jersey, USA, and created a well-constrained local model of carrying capacity. We used 1,223 core samples collected between 2006 and 2015 to estimate available food. We used species-specific 24-h time-activity data collected between 2011 and 2013 to estimate daily energy expenditure, morphometrically corrected for site- and day-specific thermoregulatory costs. To estimate population-level energy demand, we used standardized monthly ground-surveys (2005–2014) to create a migration curve, and proportionally scaled that to fit aerial survey data (2005–2014). Crucially, we also explicitly incorporated estimates of variance in all of these parameters and conducted a sensitivity analysis to diagnose the most important sources of variation in the model. Our results indicated that at estimated mean levels of supply (2.34 × 109 kcal) and cumulative demand (3.4 × 109 kcal), refuge resources were depleted before the end of the wintering season. However, at one standard error greater in supply and one standard error less in demand, 1.33 × 109 kcal remained on the landscape at the end of winter. Variation in model output appeared to be driven primarily by uncertainty in food abundance in high marsh habitats. This model allows for relative assessment of biases and uncertainties in carrying capacity modeling, and serves as a framework identifying critical science needs to improve local and regional waterfowl management planning.


Author(s):  
Nora K. Foley ◽  
Robert A. Ayuso ◽  
Joseph D. Ayotte ◽  
Denise L. Montgomery ◽  
Gilpin R. Robinson

2022 ◽  
Author(s):  
Matthew Madewell ◽  
Rusty Feagin ◽  
Thomas Huff ◽  
Bill Balboa

Abstract Salt marshes can be vulnerable to reduced freshwater input. Reduced freshwater inflows, particularly during a hot or dry summer season, can be catastrophic for vegetation productivity, organic accretion and inorganic sedimentation, and the ability of a marsh to maintain a sustainable elevation facing relative sea level rise (RSLR). Unfortunately, it is challenging for scientists to obtain inflow records for ungauged watersheds and link them with historical trends of salt marsh loss. We sought to address this challenge in Big Boggy National Wildlife Refuge (NWR), a small watershed in East Matagorda Bay, Texas. Our objective was to link the quantity of freshwater inflow with salt marsh sustainability and recommend management actions for the NWR. We first explored land cover trends and found that this watershed lost more than one-third of its low marsh since 1953. We then measured the streamflow into and out of the watershed, created a water budget, and modeled historical and future inflows from 1953 to 2100. Freshwater inflows have been increasing on average since 1953, but a combination of RSLR, sediment starvation, and punctuated seasonal droughts are likely responsible for the loss of salt marsh. We also estimated supplemental water needs during potential droughts out to 2100. We conclude that managers cannot fundamentally alter the accretion versus RSLR balance in this basin except by modifying freshwater input. Thus, during droughts, they should focus on providing these inputs and avoiding vegetation loss. Our work points to both water purchases and land management options that can achieve this goal.


2018 ◽  
Vol 9 (1) ◽  
pp. 106-116 ◽  
Author(s):  
Kevin M. Ringelman ◽  
Christopher K. Williams ◽  
Paul M. Castelli ◽  
Mason L. Sieges ◽  
Rebecca A. Longenecker ◽  
...  

Abstract The management of wintering North American waterfowl is based on the premise that the amount of foraging habitat can limit populations. To estimate carrying capacity of winter habitats, managers use bioenergetic models to quantify energy (food) availability and energy demand, and use results as planning tools to meet regional conservation objectives. Regional models provide only coarse estimates of carrying capacity because habitat area, habitat energy values, and temporal trends in population-level demand are difficult to quantify precisely at large scales. We took advantage of detailed data previously collected on wintering waterfowl at Edwin B. Forsythe National Wildlife Refuge and surrounding marsh, New Jersey, and created a well-constrained local model of carrying capacity. We used 1,223 core samples collected between 2006 and 2015 to estimate food availability. We used species-specific 24-h time–activity data collected between 2011 and 2013 to estimate daily energy expenditure, morphometrically corrected for site- and day-specific thermoregulatory costs. To estimate population-level energy demand, we used standardized monthly ground surveys (2005–2014) to create a migration curve, and proportionally scaled that to fit aerial survey data (2005–2014). Crucially, we also explicitly incorporated estimates of variance in all of these parameters and conducted a sensitivity analysis to diagnose the most important sources of variation in the model. Our results from an outlier-removed, a strict depletion model indicated that at estimated mean levels of supply (923 million kcal) and cumulative demand (3.4 billion kcal), refuge food resources were depleted before November. However, a constant-supply model that represented tidal replenishment of resources indicated that just enough energy was present to sustain peak winter populations. Variation in model output appeared to be driven primarily by uncertainty in population abundance during peak periods of use, emphasizing a new management focus on studying migration chronologies of waterfowl. This model allows for relative assessment of biases and uncertainties in carrying-capacity modeling, and serves as a framework identifying critical science needs to improve local and regional waterfowl management planning.


2011 ◽  
Vol 2 (2) ◽  
pp. 234-246 ◽  
Author(s):  
Fred A. Johnson ◽  
David R. Breininger ◽  
Brean W. Duncan ◽  
James D. Nichols ◽  
Michael C. Runge ◽  
...  

Abstract Florida scrub-jays Aphelocoma coerulescens are listed as threatened under the Endangered Species Act due to loss and degradation of scrub habitat. This study concerned the development of an optimal strategy for the restoration and management of scrub habitat at Merritt Island National Wildlife Refuge, which contains one of the few remaining large populations of scrub-jays in Florida. There are documented differences in the reproductive and survival rates of scrub-jays among discrete classes of scrub height (<120 cm or “short”; 120–170 cm or “optimal”; >170 cm or “tall”; and a combination of tall and optimal or “mixed”), and our objective was to calculate a state-dependent management strategy that would maximize the long-term growth rate of the resident scrub-jay population. We used aerial imagery with multistate Markov models to estimate annual transition probabilities among the four scrub-height classes under three possible management actions: scrub restoration (mechanical cutting followed by burning), a prescribed burn, or no intervention. A strategy prescribing the optimal management action for management units exhibiting different proportions of scrub-height classes was derived using dynamic programming. Scrub restoration was the optimal management action only in units dominated by mixed and tall scrub, and burning tended to be the optimal action for intermediate levels of short scrub. The optimal action was to do nothing when the amount of short scrub was greater than 30%, because short scrub mostly transitions to optimal height scrub (i.e., that state with the highest demographic success of scrub-jays) in the absence of intervention. Monte Carlo simulation of the optimal policy suggested that some form of management would be required every year. We note, however, that estimates of scrub-height transition probabilities were subject to several sources of uncertainty, and so we explored the management implications of alternative sets of transition probabilities. Generally, our analysis demonstrated the difficulty of managing for a species that requires midsuccessional habitat, and suggests that innovative management tools may be needed to help ensure the persistence of scrub-jays at Merritt Island National Wildlife Refuge. The development of a tailored monitoring program as a component of adaptive management could help reduce uncertainty about controlled and uncontrolled variation in transition probabilities of scrub-height and thus lead to improved decision making.


Author(s):  
Fernando Enseñat-Soberanis ◽  
Rocío Blanco-Gregory ◽  
Johnathan Mondragón-Mejía

Abstract This chapter aims to (i) determine visitor crowding standards that help decision takers to improve the visitor experience and build an accurate tourism carrying capacity; and (ii) explore a possible relationship among crowding perception, origin of visitors and willingness to pay (WTP). The first section analyses the concepts of indicators and standards as well as the importance of crowding perception as a key indicator to assess the quality of the visitor experience. Relationships between the origin of visitors, crowding and WTP to access nature-based attractions are also examined theoretically in this section. The second section describes the importance of cenotes as a main water-based tourist attraction at the Yucatán Peninsula. The third section presents the methodology; quantitative questionnaires based on normative theory were used in a visual approach focusing on Dzombakal cenote. Results outlined in the fourth section show that crowding is a good indicator to evaluate the visitor experience in water-based settings like cenotes. However, as discussed and concluded in the final section, due to significant differences between the crowding standards of local and international visitors, the symbolic value of the cenotes should be considered if a better visitor experience management is to be met.


Sign in / Sign up

Export Citation Format

Share Document